Download or read book Theory of Unconventional Superconductors written by Dirk Manske and published by Springer Science & Business Media. This book was released on 2004-06-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a theory for unconventional superconductivity driven by spin excitations. Using the Hubbard Hamiltonian and a self-consistent treatment of the spin excitations, the interplay between magnetism and superconductivity in various unconventional superconductors is discussed. In particular, the monograph applies this theory for Cooper-pairing due to the exchange of spin fluctuations to the case of singlet pairing in hole- and electron-doped high-Tc superconductors, and to triplet pairing in Sr2RuO4. Within the framework of a generalized Eliashberg-like treatment, calculations of both many normal and superconducting properties as well as elementary excitations are performed. The results are related to the phase diagrams of the materials which reflect the interaction between magnetism and superconductivity.
Download or read book Correlated Electrons In Quantum Matter written by Peter Fulde and published by World Scientific. This book was released on 2012-08-08 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap.It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.
Download or read book Correlated Electrons from Models to Materials written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2012 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Novel Superconductivity written by Stuart A. Wolf and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1086 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Novel Mechanisms of Superconductivity Conference was initially conceived in the early part of 1986 as a small, 2-1/2 day workshop of 40-70 scientists, both theorists and experimentalists interested in exploring the possible evidence for exotic, non phononic superconductivity. Of course, the historic discoveries of high temperature oxide superconductors by Bednorz and Mftller and the subsequent enhancements by the Houston/Alabama groups made such a small conference impractical. The conference necessarily had to expand, 2-1/2 days became 4-1/2 days and superconductivity in the high Tc oxides became the largest single topic in the workshop. In fact, this conference became the first major conference on this topic and thus, these proceedings are also the first maj or publication. However, heavy fermion, organic and low carrier concentration superconductors remained a very important part of this workshop and articles by the leaders in these fields are included in these proceedings. Ultimately the workshop hosted rearly 400 scientists, students and media including representatives from the maj or research groups in the U.S., Europe, Japan and the Soviet Union.
Download or read book Room temperature Superconductivity written by Andrei Mourachkine and published by Cambridge Int Science Publishing. This book was released on 2004 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation The first book dealing with the subject of room-temperature conductivity.
Download or read book Interacting Electrons written by Richard M. Martin and published by Cambridge University Press. This book was released on 2016-06-30 with total page 843 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in the theory and computation of electronic structure is bringing an unprecedented level of capability for research. Many-body methods are becoming essential tools vital for quantitative calculations and understanding materials phenomena in physics, chemistry, materials science and other fields. This book provides a unified exposition of the most-used tools: many-body perturbation theory, dynamical mean field theory and quantum Monte Carlo simulations. Each topic is introduced with a less technical overview for a broad readership, followed by in-depth descriptions and mathematical formulation. Practical guidelines, illustrations and exercises are chosen to enable readers to appreciate the complementary approaches, their relationships, and the advantages and disadvantages of each method. This book is designed for graduate students and researchers who want to use and understand these advanced computational tools, get a broad overview, and acquire a basis for participating in new developments.
Download or read book Lecture Notes on Electron Correlation and Magnetism written by Patrik Fazekas and published by World Scientific. This book was released on 1999 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readership: Graduate students and researchers in condensed matter physics.
Download or read book Light Scattering in Solids written by Manuel Cardona and published by . This book was released on 1983 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Resistive Switching Oxide Materials Mechanisms Devices and Operations written by Jennifer Rupp and published by Springer Nature. This book was released on 2021-10-15 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad examination of redox-based resistive switching memories (ReRAM), a promising technology for novel types of nanoelectronic devices, according to the International Technology Roadmap for Semiconductors, and the materials and physical processes used in these ionic transport-based switching devices. It covers defect kinetic models for switching, ReRAM deposition/fabrication methods, tuning thin film microstructures, and material/device characterization and modeling. A slate of world-renowned authors address the influence of type of ionic carriers, their mobility, the role of the local and chemical composition and environment, and facilitate readers’ understanding of the effects of composition and structure at different length scales (e.g., crystalline vs amorphous phases, impact of extended defects such as dislocations and grain boundaries). ReRAMs show outstanding potential for scaling down to the atomic level, fast operation in the nanosecond range, low power consumption, and non-volatile storage. The book is ideal for materials scientists and engineers concerned with novel types of nanoelectronic devices such as memories, memristors, and switches for logic and neuromorphic computing circuits beyond the von Neumann concept.
Download or read book Transition Metal Compounds written by Daniel Khomskii and published by Cambridge University Press. This book was released on 2014-10-23 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes all aspects of the physics of transition metal compounds, providing a comprehensive overview of this diverse class of solids. Set within a modern conceptual framework, this is an invaluable, up-to-date resource for graduate students, researchers and industrial practitioners in solid-state physics and chemistry, materials science, and inorganic chemistry.
Download or read book The Method of Second Quantization written by F.A. Berazin and published by Elsevier. This book was released on 2012-12-02 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Method of Second Quantization deals with the method of second quantization and its use to solve problems of quantum mechanics involving an indefinite number of particles, mainly in field theory and quantum statistics. Topics covered include operations on generating functionals; linear canonical transformations; quadratic operators; and Thirring's four-fermion model. State spaces and the simplest operators are also described. This book is comprised of four chapters and begins with an overview of the method of second quantization and the relevant notations. The first chapter focuses on the connections between vectors and functionals and between operators and functionals, together with fundamental rules for operating on functionals. The reader is then introduced to the so-called quadratic operators and the linear canonical transformations closely connected with them. Quadratic operators reduced and not reduced to normal form are considered. The final chapter discusses the Thirring model, the simplest relativistically invariant model in quantum field theory, and explains why it includes infinities. This monograph will be of value to students and practitioners of mathematical physics.
Download or read book Macroscopic Quantum Tunneling written by Shin Takagi and published by Cambridge University Press. This book was released on 2002-08-15 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: A coherent and self-contained account of macroscopic quantum phenomena for graduate students and researchers.
Download or read book Modern Condensed Matter Physics written by Steven M. Girvin and published by Cambridge University Press. This book was released on 2019-02-28 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and accessible coverage from the basics to advanced topics in modern quantum condensed matter physics.
Download or read book High Temperature Superconductivity in Cuprates written by A. Mourachkine and published by Springer Science & Business Media. This book was released on 2002-07-31 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of the book is to present a description of the mechanism of high-temperature superconductivity and to discuss the physics of high-temperature superconductors, both entirely based on experimental facts. The pairing mechanism of this remarkable phenomenon is based on an anomaly found in tunneling (V) characteristics of some cuprates. By using the soliton theory, it is then shown that this anomaly is caused by pairs of quasi-one dimensional excitations - bisolitons - bound due to a moderately strong, nonlinear electron-phonon interaction. At the same time, analysis of experimental data unambiguously shows that magnetic (spin) fluctuations mediate the phase coherence in cuprates. The mechanism of superconductivity in quasi-one dimensional organic superconductors and heavy fermions is discussed too. In cuprates, the origins of five different energy/temperature scales are identified. Finally, three main principles of superconductivity are introduced at the end of the book. Analysis of tunneling and angle-resolved photoemission measurements is presented in the last chapter. The book which contains 300 pages with 180 illustrations is addressed to researchers and graduate students in all branches of exact sciences.
Download or read book Ultracold Bosonic and Fermionic Gases written by Kathy Levin and published by Elsevier. This book was released on 2012-11-15 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. - Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists - Discusses landmark experiments and their fruitful interplay with basic theoretical ideas - Comprehensible rather than comprehensive, containing only minimal equations
Download or read book Fusion energy program written by United States. Congress. House. Committee on Science, Space, and Technology. Subcommittee on Investigations and Oversight and published by . This book was released on 1990 with total page 826 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinear Time Series Analysis written by Holger Kantz and published by Cambridge University Press. This book was released on 2004 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The paradigm of deterministic chaos has influenced thinking in many fields of science. Chaotic systems show rich and surprising mathematical structures. In the applied sciences, deterministic chaos provides a striking explanation for irregular behaviour and anomalies in systems which do not seem to be inherently stochastic. The most direct link between chaos theory and the real world is the analysis of time series from real systems in terms of nonlinear dynamics. Experimental technique and data analysis have seen such dramatic progress that, by now, most fundamental properties of nonlinear dynamical systems have been observed in the laboratory. Great efforts are being made to exploit ideas from chaos theory wherever the data displays more structure than can be captured by traditional methods. Problems of this kind are typical in biology and physiology but also in geophysics, economics, and many other sciences.