EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Marketing Analytics

Download or read book Marketing Analytics written by Mike Grigsby and published by Kogan Page Publishers. This book was released on 2018-04-03 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Who is most likely to buy and what is the best way to target them? How can businesses improve strategy without identifying the key influencing factors? The second edition of Marketing Analytics enables marketers and business analysts to leverage predictive techniques to measure and improve marketing performance. By exploring real-world marketing challenges, it provides clear, jargon-free explanations on how to apply different analytical models for each purpose. From targeted list creation and data segmentation, to testing campaign effectiveness, pricing structures and forecasting demand, this book offers a welcome handbook on how statistics, consumer analytics and modelling can be put to optimal use. The fully revised second edition of Marketing Analytics includes three new chapters on big data analytics, insights and panel regression, including how to collect, separate and analyze big data. All of the advanced tools and techniques for predictive analytics have been updated, translating models such as tobit analysis for customer lifetime value into everyday use. Whether an experienced practitioner or having no prior knowledge, methodologies are simplified to ensure the more complex aspects of data and analytics are fully accessible for any level of application. Complete with downloadable data sets and test bank resources, this book supplies a concrete foundation to optimize marketing analytics for day-to-day business advantage.

Book Data Analytics

    Book Details:
  • Author : Mohiuddin Ahmed
  • Publisher : CRC Press
  • Release : 2018-09-21
  • ISBN : 0429820917
  • Pages : 451 pages

Download or read book Data Analytics written by Mohiuddin Ahmed and published by CRC Press. This book was released on 2018-09-21 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large data sets arriving at every increasing speeds require a new set of efficient data analysis techniques. Data analytics are becoming an essential component for every organization and technologies such as health care, financial trading, Internet of Things, Smart Cities or Cyber Physical Systems. However, these diverse application domains give rise to new research challenges. In this context, the book provides a broad picture on the concepts, techniques, applications, and open research directions in this area. In addition, it serves as a single source of reference for acquiring the knowledge on emerging Big Data Analytics technologies.

Book Applied Predictive Analytics

Download or read book Applied Predictive Analytics written by Dean Abbott and published by John Wiley & Sons. This book was released on 2014-04-14 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the art and science of predictive analytics — techniques that get results Predictive analytics is what translates big data into meaningful, usable business information. Written by a leading expert in the field, this guide examines the science of the underlying algorithms as well as the principles and best practices that govern the art of predictive analytics. It clearly explains the theory behind predictive analytics, teaches the methods, principles, and techniques for conducting predictive analytics projects, and offers tips and tricks that are essential for successful predictive modeling. Hands-on examples and case studies are included. The ability to successfully apply predictive analytics enables businesses to effectively interpret big data; essential for competition today This guide teaches not only the principles of predictive analytics, but also how to apply them to achieve real, pragmatic solutions Explains methods, principles, and techniques for conducting predictive analytics projects from start to finish Illustrates each technique with hands-on examples and includes as series of in-depth case studies that apply predictive analytics to common business scenarios A companion website provides all the data sets used to generate the examples as well as a free trial version of software Applied Predictive Analytics arms data and business analysts and business managers with the tools they need to interpret and capitalize on big data.

Book A Practitioner s Guide to Business Analytics  PB

Download or read book A Practitioner s Guide to Business Analytics PB written by Randy Bartlett and published by McGraw Hill Professional. This book was released on 2013-01-25 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain the competitive edge with the smart use of business analytics In today’s volatile business environment, the strategic use of business analytics is more important than ever. A Practitioners Guide to Business Analytics helps you get the organizational commitment you need to get business analytics up and running in your company. It provides solutions for meeting the strategic challenges of applying analytics, such as: Integrating analytics into decision making, corporate culture, and business strategy Leading and organizing analytics within the corporation Applying statistical qualifications, statistical diagnostics, and statistical review Providing effective building blocks to support analytics—statistical software, data collection, and data management Randy Bartlett, Ph.D., is Chief Statistical Officer of the consulting company Blue Sigma Analytics. He currently works with Infosys, where he has helped build their new Business Analytics practice.

Book Fraud Analytics Using Descriptive  Predictive  and Social Network Techniques

Download or read book Fraud Analytics Using Descriptive Predictive and Social Network Techniques written by Bart Baesens and published by John Wiley & Sons. This book was released on 2015-08-17 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detect fraud earlier to mitigate loss and prevent cascading damage Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques is an authoritative guidebook for setting up a comprehensive fraud detection analytics solution. Early detection is a key factor in mitigating fraud damage, but it involves more specialized techniques than detecting fraud at the more advanced stages. This invaluable guide details both the theory and technical aspects of these techniques, and provides expert insight into streamlining implementation. Coverage includes data gathering, preprocessing, model building, and post-implementation, with comprehensive guidance on various learning techniques and the data types utilized by each. These techniques are effective for fraud detection across industry boundaries, including applications in insurance fraud, credit card fraud, anti-money laundering, healthcare fraud, telecommunications fraud, click fraud, tax evasion, and more, giving you a highly practical framework for fraud prevention. It is estimated that a typical organization loses about 5% of its revenue to fraud every year. More effective fraud detection is possible, and this book describes the various analytical techniques your organization must implement to put a stop to the revenue leak. Examine fraud patterns in historical data Utilize labeled, unlabeled, and networked data Detect fraud before the damage cascades Reduce losses, increase recovery, and tighten security The longer fraud is allowed to go on, the more harm it causes. It expands exponentially, sending ripples of damage throughout the organization, and becomes more and more complex to track, stop, and reverse. Fraud prevention relies on early and effective fraud detection, enabled by the techniques discussed here. Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques helps you stop fraud in its tracks, and eliminate the opportunities for future occurrence.

Book Predictive Analytics

Download or read book Predictive Analytics written by Eric Siegel and published by John Wiley & Sons. This book was released on 2016-01-12 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Mesmerizing & fascinating..." —The Seattle Post-Intelligencer "The Freakonomics of big data." —Stein Kretsinger, founding executive of Advertising.com Award-winning | Used by over 30 universities | Translated into 9 languages An introduction for everyone. In this rich, fascinating — surprisingly accessible — introduction, leading expert Eric Siegel reveals how predictive analytics (aka machine learning) works, and how it affects everyone every day. Rather than a “how to” for hands-on techies, the book serves lay readers and experts alike by covering new case studies and the latest state-of-the-art techniques. Prediction is booming. It reinvents industries and runs the world. Companies, governments, law enforcement, hospitals, and universities are seizing upon the power. These institutions predict whether you're going to click, buy, lie, or die. Why? For good reason: predicting human behavior combats risk, boosts sales, fortifies healthcare, streamlines manufacturing, conquers spam, optimizes social networks, toughens crime fighting, and wins elections. How? Prediction is powered by the world's most potent, flourishing unnatural resource: data. Accumulated in large part as the by-product of routine tasks, data is the unsalted, flavorless residue deposited en masse as organizations churn away. Surprise! This heap of refuse is a gold mine. Big data embodies an extraordinary wealth of experience from which to learn. Predictive analytics (aka machine learning) unleashes the power of data. With this technology, the computer literally learns from data how to predict the future behavior of individuals. Perfect prediction is not possible, but putting odds on the future drives millions of decisions more effectively, determining whom to call, mail, investigate, incarcerate, set up on a date, or medicate. In this lucid, captivating introduction — now in its Revised and Updated edition — former Columbia University professor and Predictive Analytics World founder Eric Siegel reveals the power and perils of prediction: What type of mortgage risk Chase Bank predicted before the recession. Predicting which people will drop out of school, cancel a subscription, or get divorced before they even know it themselves. Why early retirement predicts a shorter life expectancy and vegetarians miss fewer flights. Five reasons why organizations predict death — including one health insurance company. How U.S. Bank and Obama for America calculated the way to most strongly persuade each individual. Why the NSA wants all your data: machine learning supercomputers to fight terrorism. How IBM's Watson computer used predictive modeling to answer questions and beat the human champs on TV's Jeopardy! How companies ascertain untold, private truths — how Target figures out you're pregnant and Hewlett-Packard deduces you're about to quit your job. How judges and parole boards rely on crime-predicting computers to decide how long convicts remain in prison. 182 examples from Airbnb, the BBC, Citibank, ConEd, Facebook, Ford, Google, the IRS, LinkedIn, Match.com, MTV, Netflix, PayPal, Pfizer, Spotify, Uber, UPS, Wikipedia, and more. How does predictive analytics work? This jam-packed book satisfies by demystifying the intriguing science under the hood. For future hands-on practitioners pursuing a career in the field, it sets a strong foundation, delivers the prerequisite knowledge, and whets your appetite for more. A truly omnipresent science, predictive analytics constantly affects our daily lives. Whether you are a

Book Mastering pandas

    Book Details:
  • Author : Ashish Kumar
  • Publisher : Packt Publishing Ltd
  • Release : 2019-10-25
  • ISBN : 1789343356
  • Pages : 658 pages

Download or read book Mastering pandas written by Ashish Kumar and published by Packt Publishing Ltd. This book was released on 2019-10-25 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perform advanced data manipulation tasks using pandas and become an expert data analyst. Key FeaturesManipulate and analyze your data expertly using the power of pandasWork with missing data and time series data and become a true pandas expertIncludes expert tips and techniques on making your data analysis tasks easierBook Description pandas is a popular Python library used by data scientists and analysts worldwide to manipulate and analyze their data. This book presents useful data manipulation techniques in pandas to perform complex data analysis in various domains. An update to our highly successful previous edition with new features, examples, updated code, and more, this book is an in-depth guide to get the most out of pandas for data analysis. Designed for both intermediate users as well as seasoned practitioners, you will learn advanced data manipulation techniques, such as multi-indexing, modifying data structures, and sampling your data, which allow for powerful analysis and help you gain accurate insights from it. With the help of this book, you will apply pandas to different domains, such as Bayesian statistics, predictive analytics, and time series analysis using an example-based approach. And not just that; you will also learn how to prepare powerful, interactive business reports in pandas using the Jupyter notebook. By the end of this book, you will learn how to perform efficient data analysis using pandas on complex data, and become an expert data analyst or data scientist in the process. What you will learnSpeed up your data analysis by importing data into pandasKeep relevant data points by selecting subsets of your dataCreate a high-quality dataset by cleaning data and fixing missing valuesCompute actionable analytics with grouping and aggregation in pandasMaster time series data analysis in pandasMake powerful reports in pandas using Jupyter notebooksWho this book is for This book is for data scientists, analysts and Python developers who wish to explore advanced data analysis and scientific computing techniques using pandas. Some fundamental understanding of Python programming and familiarity with the basic data analysis concepts is all you need to get started with this book.

Book Marketing Data Science

Download or read book Marketing Data Science written by Thomas W. Miller and published by FT Press. This book was released on 2015-05-02 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now, a leader of Northwestern University's prestigious analytics program presents a fully-integrated treatment of both the business and academic elements of marketing applications in predictive analytics. Writing for both managers and students, Thomas W. Miller explains essential concepts, principles, and theory in the context of real-world applications. Building on Miller's pioneering program, Marketing Data Science thoroughly addresses segmentation, target marketing, brand and product positioning, new product development, choice modeling, recommender systems, pricing research, retail site selection, demand estimation, sales forecasting, customer retention, and lifetime value analysis. Starting where Miller's widely-praised Modeling Techniques in Predictive Analytics left off, he integrates crucial information and insights that were previously segregated in texts on web analytics, network science, information technology, and programming. Coverage includes: The role of analytics in delivering effective messages on the web Understanding the web by understanding its hidden structures Being recognized on the web – and watching your own competitors Visualizing networks and understanding communities within them Measuring sentiment and making recommendations Leveraging key data science methods: databases/data preparation, classical/Bayesian statistics, regression/classification, machine learning, and text analytics Six complete case studies address exceptionally relevant issues such as: separating legitimate email from spam; identifying legally-relevant information for lawsuit discovery; gleaning insights from anonymous web surfing data, and more. This text's extensive set of web and network problems draw on rich public-domain data sources; many are accompanied by solutions in Python and/or R. Marketing Data Science will be an invaluable resource for all students, faculty, and professional marketers who want to use business analytics to improve marketing performance.

Book Social Media Analytics

Download or read book Social Media Analytics written by Matthew Ganis and published by IBM Press. This book was released on 2015-12-14 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transform Raw Social Media Data into Real Competitive Advantage There’s real competitive advantage buried in today’s deluge of social media data. If you know how to analyze it, you can increase your relevance to customers, establishing yourself as a trusted supplier in a cutthroat environment where consumers rely more than ever on “public opinion” about your products, services, and experiences. Social Media Analytics is the complete insider’s guide for all executives and marketing analysts who want to answer mission-critical questions and maximize the business value of their social media data. Two leaders of IBM’s pioneering Social Media Analysis Initiative offer thorough and practical coverage of the entire process: identifying the right unstructured data, analyzing it, and interpreting and acting on the knowledge you gain. Their expert guidance, practical tools, and detailed examples will help you learn more from all your social media conversations, and avoid pitfalls that can lead to costly mistakes. You’ll learn how to: Focus on the questions that social media data can realistically answer Determine which information is actually useful to you—and which isn’t Cleanse data to find and remove inaccuracies Create data models that accurately represent your data and lead to more useful answers Use historical data to validate hypotheses faster, so you don’t waste time Identify trends and use them to improve predictions Drive value “on-the-fly” from real-time/ near-real-time and ad hoc analyses Analyze text, a.k.a. “data at rest” Recognize subtle interrelationships that impact business performance Improve the accuracy of your sentiment analyses Determine eminence, and distinguish “talkers” from true influencers Optimize decisions about marketing and advertising spend Whether you’re a marketer, analyst, manager, or technologist, you’ll learn how to use social media data to compete more effectively, respond more rapidly, predict more successfully...grow profits, and keep them growing.

Book The Definitive Guide to DAX

Download or read book The Definitive Guide to DAX written by Alberto Ferrari and published by Microsoft Press. This book was released on 2015-10-14 with total page 1515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and authoritative guide will teach you the DAX language for business intelligence, data modeling, and analytics. Leading Microsoft BI consultants Marco Russo and Alberto Ferrari help you master everything from table functions through advanced code and model optimization. You’ll learn exactly what happens under the hood when you run a DAX expression, how DAX behaves differently from other languages, and how to use this knowledge to write fast, robust code. If you want to leverage all of DAX’s remarkable power and flexibility, this no-compromise “deep dive” is exactly what you need. Perform powerful data analysis with DAX for Microsoft SQL Server Analysis Services, Excel, and Power BI Master core DAX concepts, including calculated columns, measures, and error handling Understand evaluation contexts and the CALCULATE and CALCULATETABLE functions Perform time-based calculations: YTD, MTD, previous year, working days, and more Work with expanded tables, complex functions, and elaborate DAX expressions Perform calculations over hierarchies, including parent/child hierarchies Use DAX to express diverse and unusual relationships Measure DAX query performance with SQL Server Profiler and DAX Studio

Book Advanced Customer Analytics

Download or read book Advanced Customer Analytics written by Mike Grigsby and published by Kogan Page Publishers. This book was released on 2016-10-03 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Customer Analytics provides a clear guide to the specific analytical challenges faced by the retail sector. The book covers the nature and scale of data obtained in transactions, relative proximity to the consumer and the need to monitor customer behaviour across multiple channels. The book advocates a category management approach, taking into account the need to understand the consumer mindset through elasticity modelling and discount strategies, as well as targeted marketing and loyalty design. A practical, no-nonsense approach to complex scenarios is taken throughout, breaking down tasks into easily digestible steps. The use of a fictional retail analyst 'Scott' helps to provide accessible examples of practice. Advanced Customer Analytics does not skirt around the complexities of this subject but offers conceptual support to steer retail marketers towards making the right choices for analysing their data. Online resources include a selection of datasets to support specific chapters.

Book Data Mining for Business Analytics

Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2019-10-14 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

Book The Complete Idiot s Guide to Technical Analysis

Download or read book The Complete Idiot s Guide to Technical Analysis written by Jan Arps and published by . This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Troubled economic times call for recession-proof, reliable trading advice. CD included. In today's volatile market, the most reliable way of anticipating when to invest is the technical analysis of market patterns. Here, a veteran trader and technical analysis software specialist shares his decades of experience, enhanced with an innovative audio-visual tutorial CD. It employs jargon-free, detailed explanations of each aspect of technical analysis and advice on how to set up shop to become a successful home technical analysis investor. -Veteran trader and expert on technical analysis -The most current strategies that reflect today's fast-paced market -Over 90 charts, both black-and-white and full-color, and how to read them -Unique instructional CD

Book Data Mining for Business Analytics

Download or read book Data Mining for Business Analytics written by Galit Shmueli and published by John Wiley & Sons. This book was released on 2016-04-18 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: An applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft® Office Excel® add-in XLMiner® to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: Real-world examples to build a theoretical and practical understanding of key data mining methods End-of-chapter exercises that help readers better understand the presented material Data-rich case studies to illustrate various applications of data mining techniques Completely new chapters on social network analysis and text mining A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint® slides https://www.dataminingbook.com Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology. Praise for the Second Edition "...full of vivid and thought-provoking anecdotes... needs to be read by anyone with a serious interest in research and marketing."– Research Magazine "Shmueli et al. have done a wonderful job in presenting the field of data mining - a welcome addition to the literature." – ComputingReviews.com "Excellent choice for business analysts...The book is a perfect fit for its intended audience." – Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks and book chapters. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com. He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad for 15 years.

Book Structured Analytic Techniques for Intelligence Analysis

Download or read book Structured Analytic Techniques for Intelligence Analysis written by Richards J. Heuer Jr. and published by CQ Press. This book was released on 2014-05-28 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this Second Edition of Structured Analytic Techniques for Intelligence Analysis, authors Richards J. Heuer Jr. and Randolph H. Pherson showcase fifty-five structured analytic techniques—five new to this edition—that represent the most current best practices in intelligence, law enforcement, homeland security, and business analysis.

Book Mastering Microsoft Power BI

Download or read book Mastering Microsoft Power BI written by Brett Powell and published by Packt Publishing Ltd. This book was released on 2018-03-29 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, create and manage robust Power BI solutions to gain meaningful business insights Key Features Master all the dashboarding and reporting features of Microsoft Power BI Combine data from multiple sources, create stunning visualizations and publish your reports across multiple platforms A comprehensive guide with real-world use cases and examples demonstrating how you can get the best out of Microsoft Power BI Book DescriptionThis book is intended for business intelligence professionals responsible for the design and development of Power BI content as well as managers, architects and administrators who oversee Power BI projects and deployments. The chapters flow from the planning of a Power BI project through the development and distribution of content to the administration of Power BI for an organization. BI developers will learn how to create sustainable and impactful Power BI datasets, reports, and dashboards. This includes connecting to data sources, shaping and enhancing source data, and developing an analytical data model. Additionally, top report and dashboard design practices are described using features such as Bookmarks and the Power KPI visual. BI managers will learn how Power BI’s tools work together such as with the On-premises data gateway and how content can be staged and securely distributed via Apps. Additionally, both the Power BI Report Server and Power BI Premium are reviewed. By the end of this book, you will be confident in creating effective charts, tables, reports or dashboards for any kind of data using the tools and techniques in Microsoft Power BI.What you will learn Build efficient data retrieval and transformation processes with the Power Query M Language Design scalable, user-friendly DirectQuery and Import Data Models Develop visually rich, immersive, and interactive reports and dashboards Maintain version control and stage deployments across development, test, and production environments Manage and monitor the Power BI Service and the On-premises data gateway Develop a fully on-premise solution with the Power BI Report Server Scale up a Power BI solution via Power BI Premium capacity and migration to Azure Analysis Services or SQL Server Analysis Services Who this book is for Business Intelligence professionals and existing Power BI users looking to master Power BI for all their data visualization and dashboarding needs will find this book to be useful. While understanding of the basic BI concepts is required, some exposure to Microsoft Power BI will be helpful.

Book A Textbook of Modern Pharmaceutical Analytical Techniques

Download or read book A Textbook of Modern Pharmaceutical Analytical Techniques written by Dr. Gaurav Tiwari, Mr. Pushpendu Gaurav, Dr. Gurinderdeep Singh, Dr. K K. Senthilkumar , Mr. Shreeshail Tumbagi and published by Shashwat Publication. This book was released on 2024-07-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the dynamic field of pharmaceutical sciences, analytical techniques play an indispensable role. The precision and reliability of these methods are crucial for ensuring the quality, safety, and efficacy of pharmaceutical products throughout their development, manufacturing, and regulatory approval stages. Recent decades have seen significant advancements in analytical instrumentation, methodologies, and data analysis, leading to a transformative shift in pharmaceutical analytics. This book is intended as a comprehensive guide to modern pharmaceutical analytical techniques, aiming to bridge the gap between theoretical knowledge and practical application in the evolving pharmaceutical industry. It serves as a valuable resource for students, researchers, and professionals involved in pharmaceutical analysis, providing a systematic overview of the latest analytical tools and strategies used in drug discovery, development, and quality control. Each chapter is carefully designed to offer detailed insights into the theoretical foundations, practical considerations, and recent advancements relevant to each analytical technique. The content is enriched with illustrative examples, case studies, and critical discussions. Special attention is given to emerging trends, such as nanotechnology-enabled analytical platforms, microfluidic-based assays, and in silico predictive modeling, highlighting the transformative potential of these cutting-edge technologies in pharmaceutical analytics. We hope this book will foster interdisciplinary collaboration, drive innovation, and promote best practices in pharmaceutical analytical sciences. We express our sincere gratitude to the contributors for their scholarly efforts and to the readers for their interest and engagement in this work.