EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analytical Techniques and Methods for Biomass

Download or read book Analytical Techniques and Methods for Biomass written by Sílvio Vaz Jr. and published by Springer. This book was released on 2016-10-27 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the application of techniques and methods of chemical analysis for the study of biomass and its conversion processes, aiming to fill the current gap in the book literature on the subject. The use of various techniques and analytical methods is presented and discussed in a straightforward manner, providing the reader with the possibility of choosing the most appropriate methodologies for analysis of the major classes of plant biomass and its products. In the present volume, a select group of international specialists describes different approaches to understand the biomass structure, their physical and chemical properties, the parameters of conversion processes, the products and by-products formation and quantification, quality parameters, etc. Modern chemistry plays a strong economic role in industrial activities based on biomass, with an increasing trend of the importance of its application from the deployment of biorefineries and the principles of green chemistry, which make use of the potential of biomass with decreasing impact negative environmental. In this context, analytical chemistry can contribute significantly to the supply chains of biomass, be it plant or animal origin; however, with the first offering the greatest challenges and the greatest opportunity for technical, scientific and economic progress, given its diversified chemical constitution. Thus, the chemical analysis can be used to examine the composition for characterizing physicochemical properties and to monitor their conversion processes, in order to obtain better products and uses of biomass. The quality of the biomass used determines the product quality. Therefore, reliable information is required about the chemical composition of the biomass to establish the best use (e.g., most suitable conversion process and its conditions), which will influence harvest and preparation steps. Conversion processes should be monitored for their yield, integrity, safety, and environmental impact. Effluent or residues should be monitored and analyzed for environmental control. Co-products need to be monitored to avoid interference with the product yield and product purity; however, co-products are also a good opportunity to add value to the biomass chain. Finally, products need to be monitored and analyzed to determine their yields and purity and to ensure their quality. In this context, analytical chemistry can contribute significantly to the biomass supply chains, be it of plant or animal origin.

Book Analytical Methods for Biomass Characterization and Conversion

Download or read book Analytical Methods for Biomass Characterization and Conversion written by David C. Dayton and published by Elsevier. This book was released on 2019-11-05 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Methods for Biomass Characterization and Conversion is a thorough resource for researchers, students and professors who investigate the use of biomass for fuels, chemicals and products. Advanced analytical chemistry methods and techniques can now provide detailed compositional and chemical measurements of biomass, biomass conversion process streams, intermediates and products. This volume from the Emerging Issues in Analytical Chemistry series brings together the current knowledge on each of these methods, including spectroscopic methods (Fourier Transform Infrared Spectroscopy, Near-infrared Spectroscopy, Solid State Nuclear Magnetic Resonance), pyrolysis (Gas Chromatography/Mass Spectrometry), Liquid Chromatography/High Performance Liquid Chromatography, Liquid Chromatography/Mass Spectrometry, and so on. Authors David C. Dayton and Thomas D. Foust show how these can be used for measuring biomass composition and for determining the composition of intermediates with regard to subsequent processing for biofuels, bio-chemicals and bio-based products. Covers the broad range of techniques and applications that have been developed and perfected in the last decade Highlights specific analyses required for understanding biomass conversion to select intermediates Provides references to seminal books, review articles and technical articles that go into greater depth, serving as a basis for further study

Book Sourcebook of Methods of Analysis for Biomass and Biomass Conversion Processes

Download or read book Sourcebook of Methods of Analysis for Biomass and Biomass Conversion Processes written by T. Milne and published by Springer Science & Business Media. This book was released on 1990-09-30 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lignocellulosic Biomass to Liquid Biofuels

Download or read book Lignocellulosic Biomass to Liquid Biofuels written by Abu Yousuf and published by Academic Press. This book was released on 2019-11-20 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lignocellulosic Biomass to Liquid Biofuels explores the existing technologies and most recent developments for the production of second generation liquid biofuels, providing an introduction to lignocellulosic biomass and the processes for its conversion into biofuels. The book demonstrates biorefinery concepts compared with petro refinery, as well as the challenges of second generation biofuels processing. In addition to current pre-treatment techniques and their technical, environmental and economic implications, chapters included also further examine the particularities of conversion processes for bioethanol, biobutanol and biodiesel through chemical, biochemical and combined approaches. Finally, the book looks into concepts and tools for techno-economic and environmental analysis, which include supply chain assessment, by-products, zero-waste techniques and process evaluation and optimization. Lignocellulosic Biomass to Liquid Biofuels is particularly useful for researchers in the field of liquid biofuels seeking alternative chemical and biochemical pathways or those interested advanced methods to calculate maximum yield for each process and methods to simulate the implications and costs of scaling up. Furthermore, with the introduction provided by this volume, researchers and graduate students entering the field will be able to quickly get up to speed and identify knowledge gaps in existing and upcoming technology the book’s comprehensive overview. Examines the state-of-the-art technology for liquid biofuels production from lignocellulosic biomass Provides a comprehensive overview of the existing chemical and biochemical processes for second generation biofuel conversion Presents tools for the techno-economic and environmental analysis of technologies, as well as for the scale-up simulation of conversion processes

Book Biomass Modification  Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production

Download or read book Biomass Modification Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production written by Robert Henry and published by Frontiers Media SA. This book was released on 2016-06-09 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conversion of lignocellulosic biomass into renewable fuels and other commodities has provided an appealing alternative towards supplanting global dependence on fossil fuels. The suitability of multitudes of plants for deconstruction to useful precursor molecules and products is currently being evaluated. These studies have probed a variety of phenotypic traits, including cellulose, non-cellulosic polysaccharide, lignin, and lignin monomer composition, glucose and xylose production following enzymatic hydrolysis, and an assessment of lignin-carbohydrate and lignin-lignin linkages, to name a few. These quintessential traits can provide an assessment of biomass recalcitrance, enabling researchers to devise appropriate deconstruction strategies. Plants with high polysaccharide and lower lignin contents have been shown to breakdown to monomeric sugars more readily. Not all plants contain ideal proportions of the various cell wall constituents, however. The capabilities of biotechnology can alleviate this conundrum by tailoring the chemical composition of plants to be more favorable for conversion to sugars, fuels, etc. Increases in the total biomass yield, cellulose content, or conversion efficiency through, for example, a reduction in lignin content, are pathways being evaluated to genetically improve plants for use in manufacturing biofuels and bio-based chemicals. Although plants have been previously domesticated for food and fiber production, the collection of phenotypic traits prerequisite for biofuel production may necessitate new genetic breeding schemes. Given the plethora of potential plants available for exploration, rapid analytical methods are needed to more efficiently screen through the bulk of samples to hone in on which feedstocks contain the desired chemistry for subsequent conversion to valuable, renewable commodities. The standard methods for analyzing biomass and related intermediates and finished products are laborious, potentially toxic, and/or destructive. They may also necessitate a complex data analysis, significantly increasing the experimental time and add unwanted delays in process monitoring, where delays can incur in significant costs. Advances in thermochemical and spectroscopic techniques have enabled the screening of thousands of plants for different phenotypes, such as cell-wall cellulose, non-cellulosic polysaccharide, and lignin composition, lignin monomer composition, or monomeric sugar release. Some instrumental methods have been coupled with multivariate analysis, providing elegant chemometric predictive models enabling the accelerated identification of potential feedstocks. In addition to the use of high-throughput analytical methods for the characterization of feedstocks based on phenotypic metrics, rapid instrumental techniques have been developed for the real-time monitoring of diverse processes, such as the efficacy of a specific pretreatment strategy, or the formation of end products, such as biofuels and biomaterials. Real-time process monitoring techniques are needed for all stages of the feedstocks-to-biofuels conversion process in order to maximize efficiency and lower costs by monitoring and optimizing performance. These approaches allow researchers to adjust experimental conditions during, rather than at the conclusion, of a process, thereby decreasing overhead expenses. This Frontiers Research Topic explores options for the modification of biomass composition and the conversion of these feedstocks into to biofuels or biomaterials and the related innovations in methods for the analysis of the composition of plant biomass, and advances in assessing up- and downstream processes in real-time. Finally, a review of the computational models available for techno-economic modeling and lifecycle analysis will be presented.

Book Biotechnology for Fuels and Chemicals

Download or read book Biotechnology for Fuels and Chemicals written by Brian H. Davison and published by Humana. This book was released on 2013-05-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increased attendance required concurrent sessions for the 48 oral presentations and 190 submitted posters (for more details see Website: www.ct.ornl.gov/symposium). Attendees came from Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, Germany, Hungary, India, Japan, Korea, Mexico, The Netherlands, Russia, South Korea, Spain, Sweden, Turkey, and Ven ezuela, as well as from the United States. This international perspective was continued in a Special Topic Ses sion sponsored by the International Energy Agency (lEA) Bioenergy Pro gram on Biofuels and chaired by Jack Saddler and David Gregg from the University of British Columbia. Several of the 10 member countries in this network are approaching Demonstrations of the Biomass-to-Ethanol pro cess and have a range of more fundamental projects that look at various aspects of pretreatment, enzymatic hydrolysis, fermentation, and lignin utilization. Presenters from several of the participating countries described their country's biomass-to-ethanol projects, and differential factors such as the type of biomass available, the maturity of the wood or agricultural processing industry, and the willingness of government to bear the risk/ cost of development and demonstration.

Book Biomass Preprocessing and Pretreatments for Production of Biofuels

Download or read book Biomass Preprocessing and Pretreatments for Production of Biofuels written by Jaya Shankar Tumuluru and published by CRC Press. This book was released on 2018-07-26 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering the physical, chemical, and energy properties of lignocellulosic biomass is important to produce high-quality consistent feedstocks with reduced variability for biofuels production. The emphasis of this book will be the beneficial impacts that mechanical, chemical, and thermal preprocessing methods can have on lignocellulosic biomass quality attributes or specifications for solid and liquid biofuels and biopower production technologies. "Preprocessing" refers to treatments that can occur at a distance from conversion and result in an intermediate with added value, with improved conversion performance and efficiency. This book explores the effects of mechanical, chemical, and thermal preprocessing methods on lignocellulosic biomass physical properties and chemical composition and their suitability for biofuels production. For example, biomass mechanical preprocessing methods like size reduction (which impacts the particle size and distribution) and densification (density and size and shape) are important for feedstocks to meet the quality requirements for both biochemical and thermochemical conversion methods like enzymatic conversion, gasification, and pyrolysis process. Thermal preprocessing methods like drying, deep drying, torrefaction, steam explosion, hydrothermal carbonization, and hydrothermal liquefaction effect feedstock's proximate, ultimate and energy property, making biomass suitable for both solid and liquid fuel production. Chemical preprocessing which includes washing, leaching, acid, alkali, and ammonia fiber explosion that can enable biochemical composition, such as modification of lignin and hemicellulose, and impacts the enzymatic conversion application for liquid fuels production. This book also explores the integration of these preprocessing technologies to achieve desired lignocellulosic biomass quality attributes for biofuels production.

Book Biomass for Sustainable Applications

Download or read book Biomass for Sustainable Applications written by Sarra Gaspard and published by Royal Society of Chemistry. This book was released on 2013-12-05 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable sources of energy and a supply of good quality water are two major challenges facing modern societies across the globe. Biomass from cultivated plants may be used to generate energy, but at the cost of contaminated surface waters from pesticide and fertiliser use. This two-volume set examines the potential use of biomass as both a source of sustainable energy and a resource to tackle contaminated soils and wastewaters. Consideration is given to non-food crops, bacteria ,and fungi as sources of biomass and the book enables the reader to identify the best local bioresources according to the desired application. With contributions from across the globe, this is an essential guide to meeting the demand for energy and pollution remediation by exploiting local and renewable resources. The example scenarios given may inspire policy makers and local officers, while chemical engineers and environmental scientists in both academia and industry will benefit from the comprehensive review of current thinking and application.

Book Pretreatment of Biomass

Download or read book Pretreatment of Biomass written by Ashok Pandey and published by Academic Press. This book was released on 2014-09-18 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pretreatment of Biomass provides general information, basic data, and knowledge on one of the most promising renewable energy sources—biomass for their pretreatment—which is one of the most essential and critical aspects of biomass-based processes development. The quest to make the environment greener, less polluted, and less hazardous has led to the concept of biorefineries for developing bio-based processes and products using biomass as a feedstock. Each kind of biomass requires some kind of pretreatment to make it suitable for bioprocess. This book provides state-of-art information on the methods currently available for this. This book provides data-based scientific information on the most advanced and innovative pretreatment of lignocellulosic and algal biomass for further processing. Pretreatment of biomass is considered one of the most expensive steps in the overall processing in a biomass-to-biofuel program. With the strong advancement in developing lignocellulose biomass- and algal biomass-based biorefineries, global focus has been on developing pretreatment methods and technologies that are technically and economically feasible. This book provides a comprehensive overview of the latest developments in methods used for the pretreatment of biomass. An entire section is devoted to the methods and technologies of algal biomass due to the increasing global attention of its use. Provides information on the most advanced and innovative pretreatament processes and technologies for biomass Covers information on lignocellulosic and algal biomass to work on the principles of biorefinery Useful for researchers intending to study scale-up Provides information on integration of processes and technologies for the pretreatment of biomass

Book Technologies for Biochemical Conversion of Biomass

Download or read book Technologies for Biochemical Conversion of Biomass written by Hongzhang Chen and published by Academic Press. This book was released on 2016-12-14 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Technologies for Biochemical Conversion of Biomass introduces biomass biochemical conversion technology, including the pretreatment platform, enzyme platform, cell refining platform, sugar platform, fermentation platform, and post-treatment platform. Readers will find a systematic treatment, not only of the basics of biomass biochemical conversion and the introduction of each strategy, but also of the current advances of research in this area. Researchers will find the key problems in each technology platform for biomass biochemical conversion identified and solutions offered. This valuable reference book features new scientific research and the related industrial application of biomass biochemical conversion technology as the main content, and then systematically introduces the basic principles and applications of biomass biochemical conversion technology. Combines descriptions of these technologies to provide strategies and a platform for biochemical conversion in terms of basic knowledge, research advances, and key problems Summarizes models of biomass biochemical conversion for multiple products Presents products of biomass biochemical conversion from C1 to C10

Book Process Design Strategies for Biomass Conversion Systems

Download or read book Process Design Strategies for Biomass Conversion Systems written by Denny K. S. Ng and published by John Wiley & Sons. This book was released on 2016-01-19 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers recent developments in process systems engineering (PSE) for efficient resource use in biomass conversion systems. It provides an overview of process development in biomass conversion systems with focus on biorefineries involving the production and coproduction of fuels, heating, cooling, and chemicals. The scope includes grassroots and retrofitting applications. In order to reach high levels of processing efficiency, it also covers techniques and applications of natural-resource (mass and energy) conservation. Technical, economic, environmental, and social aspects of biorefineries are discussed and reconciled. The assessment scales vary from unit- to process- and life-cycle or supply chain levels. The chapters are written by leading experts from around the world, and present an integrated set of contributions. Providing a comprehensive, multi-dimensional analysis of various aspects of bioenergy systems, the book is suitable for both academic researchers and energy professionals in industry.

Book Quantitative Methods and Analytical Techniques in Food Microbiology

Download or read book Quantitative Methods and Analytical Techniques in Food Microbiology written by Leonardo Sepúlveda Torre and published by CRC Press. This book was released on 2022-06-08 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides up-to-date and detailed scientific information on recent developments and new approaches in food microbiology, focusing on microbial food pathogens. The volume presents the fundamental aspects of food and microorganisms, and also addresses food systems and measures to prevent and control food, foodborne diseases, etc. According to the editors, every minute, there are about 50,000 cases of gastrointestinal diseases from food-mediated infections and food poisoning, and many individuals, especially children, die from these infections. The most important preventive measures are for the development and continuous implementation of effective interventions to improve overall food safety. The book helps to meet the challenge of food safety issues by focusing on the fundamental aspects of food and microorganisms. Each section consists of detailed information on the particular aspects of each topic, including basic microbiology, safety, pathogenic microorganisms, food conservation, sanitization, and hygiene procedures. The microbial diversity found in food is described from the classification by kingdoms and the main groups of microorganisms present in them. Although the main issue is microbial food pathogens, the book also covers another important aspect of food microbiology: food systems and measurements to prevent and control food, foodborne diseases, etc. Quantitative Methods Quantitative Methods and Analytical Techniques in Food Microbiology: Challenges and Health Implications will be a valuable resource for scientists, researchers, faculty, students, and others in various sectors in food science and technology. The scope of food microbiology is highly inclusive, as it interacts with all subdisciplines of microbiology, such as public health microbiology, microbial genetics, fermentation technologies, microbial physiology and biochemistry, and food microbiologists have been at the forefront of many microbiological concepts and advances.

Book Biomass Modification  Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production

Download or read book Biomass Modification Characterization and Process Monitoring Analytics to Support Biofuel and Biomaterial Production written by and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The conversion of lignocellulosic biomass into renewable fuels and other commodities has provided an appealing alternative towards supplanting global dependence on fossil fuels. The suitability of multitudes of plants for deconstruction to useful precursor molecules and products is currently being evaluated. These studies have probed a variety of phenotypic traits, including cellulose, non-cellulosic polysaccharide, lignin, and lignin monomer composition, glucose and xylose production following enzymatic hydrolysis, and an assessment of lignin-carbohydrate and lignin-lignin linkages, to name a few. These quintessential traits can provide an assessment of biomass recalcitrance, enabling researchers to devise appropriate deconstruction strategies. Plants with high polysaccharide and lower lignin contents have been shown to breakdown to monomeric sugars more readily. Not all plants contain ideal proportions of the various cell wall constituents, however. The capabilities of biotechnology can alleviate this conundrum by tailoring the chemical composition of plants to be more favorable for conversion to sugars, fuels, etc. Increases in the total biomass yield, cellulose content, or conversion efficiency through, for example, a reduction in lignin content, are pathways being evaluated to genetically improve plants for use in manufacturing biofuels and bio-based chemicals. Although plants have been previously domesticated for food and fiber production, the collection of phenotypic traits prerequisite for biofuel production may necessitate new genetic breeding schemes. Given the plethora of potential plants available for exploration, rapid analytical methods are needed to more efficiently screen through the bulk of samples to hone in on which feedstocks contain the desired chemistry for subsequent conversion to valuable, renewable commodities. The standard methods for analyzing biomass and related intermediates and finished products are laborious, potentially toxic, and/or destructive. They may also necessitate a complex data analysis, significantly increasing the experimental time and add unwanted delays in process monitoring, where delays can incur in significant costs. Advances in thermochemical and spectroscopic techniques have enabled the screening of thousands of plants for different phenotypes, such as cell-wall cellulose, non-cellulosic polysaccharide, and lignin composition, lignin monomer composition, or monomeric sugar release. Some instrumental methods have been coupled with multivariate analysis, providing elegant chemometric predictive models enabling the accelerated identification of potential feedstocks. In addition to the use of high-throughput analytical methods for the characterization of feedstocks based on phenotypic metrics, rapid instrumental techniques have been developed for the real-time monitoring of diverse processes, such as the efficacy of a specific pretreatment strategy, or the formation of end products, such as biofuels and biomaterials. Real-time process monitoring techniques are needed for all stages of the feedstocks-to-biofuels conversion process in order to maximize efficiency and lower costs by monitoring and optimizing performance. These approaches allow researchers to adjust experimental conditions during, rather than at the conclusion, of a process, thereby decreasing overhead expenses. This Frontiers Research Topic explores options for the modification of biomass composition and the conversion of these feedstocks into to biofuels or biomaterials and the related innovations in methods for the analysis of the composition of plant biomass, and advances in assessing up- and downstream processes in real-time. Finally, a review of the computational models available for techno-economic modeling and lifecycle analysis will be presented.

Book Biomass Now

    Book Details:
  • Author : Miodrag Darko Matovic
  • Publisher : BoD – Books on Demand
  • Release : 2013-04-30
  • ISBN : 953511106X
  • Pages : 464 pages

Download or read book Biomass Now written by Miodrag Darko Matovic and published by BoD – Books on Demand. This book was released on 2013-04-30 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume book on biomass is a reflection of the increase in biomass related research and applications, driven by overall higher interest in sustainable energy and food sources, by increased awareness of potentials and pitfalls of using biomass for energy, by the concerns for food supply and by multitude of potential biomass uses as a source material in organic chemistry, bringing in the concept of bio-refinery. It reflects the trend in broadening of biomass related research and an increased focus on second-generation bio-fuels. Its total of 40 chapters spans over diverse areas of biomass research, grouped into 9 themes.

Book Handbook of Biomass

    Book Details:
  • Author : Sabu Thomas
  • Publisher : Springer Nature
  • Release :
  • ISBN : 9819967279
  • Pages : 1554 pages

Download or read book Handbook of Biomass written by Sabu Thomas and published by Springer Nature. This book was released on with total page 1554 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biomass to Biofuel Supply Chain Design and Planning under Uncertainty

Download or read book Biomass to Biofuel Supply Chain Design and Planning under Uncertainty written by Mir Saman Pishvaee and published by Academic Press. This book was released on 2020-11-25 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomass to Biofuel Supply Chain Design and Planning under Uncertainty: Concepts and Quantitative Methods explores the design and optimization of biomass-to-biofuel supply chains for commercial-scale implementation of biofuel projects by considering the problems and challenges encountered in real supply chains. By offering a fresh approach and discussing a wide range of quantitative methods, the book enables researchers and practitioners to develop hybrid methods that integrate the advantages and features of two or more methods in one decision-making framework for the efficient optimization of biofuel supply chains, especially for complex supply chain models. Combining supply chain management and modeling techniques in a single volume, the book is beneficial for graduate students who no longer need to consult subject-specific books alongside mathematical modeling textbooks. The book consists of two main parts. The first part describes the key components of biofuel supply chains, including biomass production, harvesting, collection, storage, preprocessing, conversion, transportation, and distribution. It also provides a comprehensive review of the concepts, problems, and opportunities associated with biofuel supply chains, such as types and properties of the feedstocks and fuel products, decision-making levels, sustainability concepts, uncertainty analysis and risk management, as well as integration of biomass supply chain with other supply chains. The second part focuses on modeling and optimization of biomass-to-biofuel supply chains under uncertainty, using different quantitative methods to determine optimal design. Proposes a general multi-level framework for the optimal design and operation of biomass-to-biofuel supply chains through quantitative analysis and modeling, including different biomass and waste biomass feedstock, production pathways, technology options, transportation modes, and final products Explores how modeling and optimization tools can be utilized to address sustainability issues in biofuel supply chains by simultaneously assessing and identifying sustainable solutions Presents several case studies with different regional constraints to evaluate the practical applicability of different optimization methods and compares their performance in real-world situations Includes General Algebraic Modeling System (GAMS) codes for solving biomass supply chain optimization problems discussed in different chapters

Book Metabolic Flux Analysis in Eukaryotic Cells

Download or read book Metabolic Flux Analysis in Eukaryotic Cells written by Deepak Nagrath and published by Humana. This book was released on 2021-01-15 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the latest metabolic flux analysis (MFA) techniques that cover the analysis of cellular, organ level, and whole-body metabolism. The chapters in this book discuss topics such as deutrium tracing; isotopologue fractions using GC-TOF; non-targeted mass isotopolome analysis; large-scale profiling of cellular metabolic activities using deep 13C labeling medium; metastases in mice; SWATH; Exo-MFA; metabolic flux from time-course metabolomics; and thermodynamic approaches in flux analysis. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Metabolic Flux Analysis in Eukaryotic Cells: Methods and Protocols is a valuable resource for both experts in MFA techniques and researchers getting involved in the role of quantitative studies to uncover the dysregulated pathways in human diseases.