EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine

Download or read book Numerical Simulation of a Cross Flow Marine Hydrokinetic Turbine written by Taylor Jessica Hall and published by . This book was released on 2012 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the search for clean, renewable energy, the kinetic energy of water currents in oceans, rivers, and estuaries is being studied as a predictable and environmentally benign source. We investigate the flow past a cross flow hydrokinetic turbine (CFHT) in which a helical blade turns around a shaft perpendicular to the free stream under the hydrodynamic forces exerted by the flow. This type of turbine, while very different from the classical horizontal axis turbine commonly used in the wind energy field, presents advantages in the context of hydrokinetic energy harvesting, such as independence from current direction, including reversibility, stacking, and self-starting without complex pitch mechanisms. This thesis develops a numerical simulation methodology that applies the Reynolds Average Navier Stokes equations and the three-dimensional sliding mesh technique to model CFHTs. The methodology is validated against small scale experiments, available within NNMREC at the University of Washington and is used to investigate the efficiency of the energy capture and the hydrodynamic forces acting on the blades. First, we study the stationary turbine and conclude that the developed methodology accurately models the starting torque of a turbine initially in static conditions; some limitations are found, however, in predicting separated flow. The dynamic performance of the rotating turbine is predicted with reasonable accuracy using the sliding mesh technique. Excellent qualitative agreement with experimental trends is found in the results, and the actual predicted values from the simulations show good agreement with measurements. Though limitations in accurately modeling dynamic stall for the rotating turbine are confirmed, the good qualitative agreement suggests this methodology can be used to support turbine design and performance over a wide range of parameters, minimizing the number of prototypes to build and experiments to run in the pursuit of an optimized turbine. This methodology can also provide a cost-effective way of evaluating detailed full scale effects, such as mooring lines or local bottom bathymetry features, on both turbine performance and environmental assessment.

Book Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines

Download or read book Numerical Modeling of the Effects of a Free Surface on the Operating Characteristics of Marine Hydrokinetic Turbines written by Samantha Jane Adamski and published by . This book was released on 2013 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Marine Hydrokinetic (MHK) turbines are a growing area of research in the renewable energy field because tidal currents are a highly predictable clean energy source. The presence of a free surface may influence the flow around the turbine and in the wake, critically affecting turbine performance and environmental effects through modification of the wake physical variables. The characteristic Froude number that control these processes is still a matter of controversy, with the channel depth, the turbine's hub depth, the blade tip depth and the turbine diameter as potential candidates for a length scale. We use a Reynolds Averaged Navier Stokes (RANS) simulation with a Blade Element Theory (BET) model of the turbine and with a Volume of Fluid model, which is used to track the free surface dynamics, to understand the physics of the wake-free surface interactions. Pressure and flow rate boundary conditions for a channel's inlet, outlet and air side have been tested in an effort to determine the optimum set of simulation conditions for MHK turbines in rivers or shallow estuaries. Stability and accuracy in terms of power extraction and kinetic and potential energy budgets are considered. The goal of this research is to determine, quantitatively in non-dimensional parameter space, the limit between negligible and significant free surface effects on MHK turbine analysis.

Book Vertical Axis Hydrokinetic Turbines  Numerical and Experimental Analyses

Download or read book Vertical Axis Hydrokinetic Turbines Numerical and Experimental Analyses written by Mabrouk Mosbahi and published by Bentham Science Publishers. This book was released on 2021-12-14 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is a guide to numerical and experimental processes that are used to analyze and improve the efficiency of vertical axis rotors. Chapters present information that is required to optimize the geometrical parameters of rotors or understand how to augment upstream water velocity. The authors of this volume present a numerical model to characterize the water flow around the vertical axis rotors using commercial CFD code in Ansys Fluent®. The software has been used to select adequate parameters and perform computational simulations of spiral Darrieus turbines. The contents of the volume explain the experimental procedure carried out to evaluate the performance of the spiral Darrieus turbine, how to characterize the water flow in the vicinity of the tested turbine and the method to assess the spiral angle influence on the turbine performance parameters. Results for different spiral angles (ranging from 10° to 40°) are presented. This volume is a useful handbook for engineers involved in power plant design and renewable energy sectors who are studying the computational fluid dynamics of vertical axis turbines (such as Darrieus turbines) that are used in hydropower projects. Key features: - 4 chapters that cover the numerical and experimental analysis of vertical axis rotors and hydrokinetic turbines - Simple structured layout for easy reading (methodology, models and results) - Bibliographic study to introduce the reader to the subject - A wide range of parameters included in experiments - A comprehensive appendix of tables for mechanical parameters, statistical models, rotor parameters and geometric details.

Book Development and Assessment of a Modeling Method for Hydrokinetic Turbines Operating in Arrays

Download or read book Development and Assessment of a Modeling Method for Hydrokinetic Turbines Operating in Arrays written by Sébastien Bourget and published by . This book was released on 2018 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to contribute to the development of the hydrokinetic power industry, a new line of research has been initiated recently at the Laboratoire de Mécanique des Fluides Numérique (LMFN) de l'Université Laval. It is related to the optimization of turbine farm layouts. As the numerical modeling of turbine farms has been little investigated in the past at the LMFN, the objectives of this work are to develop a numerical methodology that will allow the study of turbine farm layouts at reasonable simulation cost and to verify its reliability. Inspired from numerical models found in the available literature, an original modeling approach is developed. This modeling approach is referred-to as the Effective Performance Turbine Model, or EPTM. The EPTM reliability is assessed in terms of its capacity to predict correctly the mean performances and the wake recovery of the turbines. The results of "high-fidelity" CFD simulations, which include at high cost the complete rotor geometry, are used as a reference. Results of the performance assessment show that the EPTM approach is appropriate for the modeling of both axial-flow (horizontal-axis) turbines and cross-flow (vertical-axis) turbines operating in clean flow conditions. Indeed, the EPTM provides very good predictions of the value of the optimal angular speed at which the rotor should be rotating to operate near maximum power extraction, the magnitude of the mean forces acting on the turbine and the mean power it extracts from the flow. The EPTM also succeeds to generate the adequate nearwake flow topology of each of the reference turbine investigated. However, the steady turbulence modeling approach used in the EPTM simulations appears inadequate in some cases. Possible model improvements are discussed as a conclusion.

Book Performance Evaluation  Emulation  and Control of Cross flow Hydrokinetic Turbines

Download or read book Performance Evaluation Emulation and Control of Cross flow Hydrokinetic Turbines written by Robert J. Cavagnaro and published by . This book was released on 2016 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cross-flow hydrokinetic turbines are a promising option for effectively harvesting energy from fast-flowing streams or currents. This work describes the dynamics of such turbines, analyzes techniques used to scale turbine properties for prototyping, determines and demonstrates the limits of stability for cross-flow rotors, and discusses means and objectives of turbine control. This involves a progression from the analysis of a laboratory-scale prototype turbine to the emulation of a field-scale commercial turbine under realistic control. Understanding of turbine and system component dynamics and performance is leveraged at each phase, with the ultimate goal of enhancing the efficacy of prototype testing and enabling safer, more advanced control techniques. Novel control strategies are under development to utilize low-speed operation (slower than at maximum power point) as a means of shedding power under rated conditions. However, operation in this regime may be unstable. An experiment designed to characterize the stability of a laboratory-scale cross-flow turbine operating near a critically low speed yields evidence that system stall (complete loss of ability to rotate) occurs due, in part, to interactions with turbulent decreases in flow speed. The turbine is capable of maintaining 'stable' operation at critical speed for short duration (typically less than 10 s), as described by exponential decay. The presence of accelerated 'bypass' flow around the rotor and decelerated 'induction' region directly upstream of the rotor, both predicted by linear momentum theory, are observed and quantified with particle image velocimetry (PIV) measurements conducted upstream of the turbine. Additionally, general agreement is seen between PIV inflow measurements and those obtained by an advection-corrected acoustic Doppler velocimeter (ADV) further upstream. Definitive evidence linking observable flow events to the onset of system stall is not found. However, a link between turbulent kinetic energy of the flow, the system time constant, and the turbine's dynamic response to turbulence indicates changes in the flow occurring over a horizon of several seconds create the conditions under which system stall is likely. Performance of a turbine at small (prototype) geometric scale may be prone to undesirable effects due to operation at low Reynolds number and in the presence of high channel blockage. Therefore, testing at larger scale, in open water is desirable. A cross-flow hydrokinetic turbine with a projected area (product of blade span and rotor diameter) of 0.7 m^2 is evaluated in open-water tow trials at three inflow speeds ranging from 1.0 m/s to 2.1 m/s. Measurements of the inflow velocity, the rotor mechanical power, and electrical power output of a complete power take-off (PTO) system are utilized to determine the rotor hydrodynamic efficiency (maximum of 17%) and total system efficiency (maximum of 9%). A lab-based dynamometry method yields individual component and total PTO efficiencies, shown to have high variability and strong influence on total system efficiency. The method of tow-testing is found effective, and when combined with PTO characterization, steady-state performance can be inferred solely from inflow velocity and turbine rotation rate. Dynamic efficiencies of PTO components can effect the overall efficiency of a turbine system, a result from field characterization. Thus, the ability to evaluate such components and their potential effects on turbine performance prior to field deployment is desirable. Before attempting control experiments with actual turbines, hardware-in-the-loop testing on controllable motor-generator sets or electromechanical emulation machines (EEMs) are explored to better understand power take-off response. The emulator control dynamic equations are presented, methods for scaling turbine parameters are developed and evaluated, and experimental results are presented from three EEMs programmed to emulate the same cross-flow turbine. Although hardware platforms and control implementations varied, results show that each EEM is successful in emulating the turbine model at different power levels, thus demonstrating the general feasibility of the approach. However, performance of motor control under torque command, current command, or speed command differed; torque methods required accurate characterization of the motors while speed methods utilized encoder feedback and more accurately tracked turbine dynamics. In a demonstration of an EEM for evaluating a hydrokinetic turbine implementation, a controller is used to track the maximum power-point of the turbine in response to turbulence. Utilizing realistic inflow conditions and control laws, the emulator dynamic speed response is shown to agree well at low frequencies with simulation but to deviate at high frequencies. The efficacy of an electromechanical emulator as an accurate representation of a fielded turbine is evaluated. A commercial horizontally-oriented cross-flow turbine is dynamically emulated on hardware to investigate control strategies and grid integration. A representative inflow time-series with a mean of 2 m/s is generated from high-resolution flow measurements of a riverine site and is used to drive emulation. Power output during emulation under similar input and loading conditions yields agreement with field measurements to within 3% at high power, near-optimal levels. Constant tip-speed ratio and constant speed proportional plus integral control schemes are compared to optimal nonlinear control and constant resistance regulation. All controllers yield similar results in terms of overall system efficiency. The emulated turbine is more responsive to turbulent inflow than the field turbine, as the model utilized to drive emulation does not account for a smoothing effect of turbulent fluctuations over the span of the fielded turbine's rotors. The turbine has a lower inertia than the demand of an isolated grid, indicating a secondary source of power with a similar frequency response is necessary if a single turbine cannot meet the entire demand. Major contributions of this work include exploration of the system time constant as an indicator of turbine dynamic response, evidence a turbine experiences system stall probabilistically, a reduced-complexity field performance characterization methodology, and demonstration of the effectiveness of electromechanical emulators at replicating turbine dynamics.

Book Modeling and Optimizing Hydrokinetic Turbine Arrays Using Numerical Simulations

Download or read book Modeling and Optimizing Hydrokinetic Turbine Arrays Using Numerical Simulations written by Olivier Gauvin Tremblay and published by . This book was released on 2021 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to plan a river hydrokinetic turbine array deployment and to maximize its energy extraction, turbine array simulations are often carried out. However, in a context where tens of turbines are deployed, it is unthinkable to simulate the complete rotating geometry of every turbine. It is therefore necessary to use simplified models that reproduce accurately the turbines and that incorporate all the main interactions taking place in a turbine array, namely the turbine-wake interactions, the blockage effects and the interaction with the resource. The Effective Performance Turbine Model (EPTM) is a suitable tool in that sense, allowing to test and analyze a large amount of different array configurations at a low computational cost. Although the EPTM has been developed to serve as a tool for array analysis, it has only been tested up to now in a uniform flow with a low turbulence level. For this reason, the EPTM has been validated and adapted in this work to ensure a proper and reliable use in river array flow conditions. Herein, the efforts has been mainly put on a cross-flow turbine (CFT) technology. First, a numerical methodology has been developed to reproduce river flow conditions and array flow conditions, which include shear, large-scale temporal fluctuations and (modeled) turbulence. Following 3D blade-resolved turbine simulations, it is found that a turbine operating in those conditions sees a reduction of its performance, especially when the shear aspect is present. However, it turns out that the effective drag coefficient remains essentially unchanged, allowing to use the same local effective force coefficient distribution in every situation. Moreover, although the effective power coefficient appears to be lower than for a turbine in idealized flow conditions, it does not vary depending of the type of perturbation and its decrease is small under free-surface conditions. This is important for the use of the EPTM, since the simplified model is based on this assumption. Multiple comparisons between EPTM and blade-resolved turbine simulations in river/array flow conditions have confirmed that the EPTM-CFT is always able to predict accurately the performances of the turbines and to reproduce their mean wake with a high degree of reliability. Following this validation procedure, a series of turbine array simulations have been conducted using the EPTM-CFT. Assuming a turbulent flow environment, many vertical-axis turbine array configurations have been tested to study more precisely the effect of local blockage, lateral and longitudinal spacing, array staggering and direction of rotation on turbine performance. Results have shown that all aspects of blockage, local and global, must be considered simultaneously with the possibility of turbine-wake interaction, especially when the turbines generate a wake that deflects sideways down-stream. The latter aspect could play an important role in determining whether or not the array should be staggered. For a multiple-row array, this aspect also affects the relevance of the different array parameters used. Indeed, in this context, the lateral spacing becomes more meaningful than the local blockage value. To help decide on the optimal lateral and longitudinal spacing to set within an array, a new parameter has been proposed: the marginal power per turbine. As many economic variables can come into play, this parameter helps quantifying the benefit of adding rows or columns of turbines in comparison to the already installed power. Finally, it is possible, for an identified optimal turbine array, to assess its impact on the resource. Based on an actual river site, a realistic simulation of a turbine array in river has been performed using the methodology previously developed. The simulation results, compared with the results of more simplified simulations, have pointed out that an appropriate channel geometry and an accurate inflow velocity distribution are essential to obtain reliable array performances. Although it arises that taking into account the free surface has negligibly affected the array performances and the water level upstream for the case considered, it remains that the assessment of the impact on the resource is always relevant since the rise in the water level can be larger if the blockage ratio or the Froude number are higher.

Book Numerical Analysis of an Axial Flow Horizontal Axis Marine Hydrokinetic Turbine

Download or read book Numerical Analysis of an Axial Flow Horizontal Axis Marine Hydrokinetic Turbine written by Aarshana Parekh and published by . This book was released on 2019 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tidal energy extraction using marine hydrokinetic devices has become an important area of research in the renewable energy field in recent years because of the highly predictable nature of the tides. Due to its early stage of development, many studies need yet to be done before deployment of these devices at tidal sites. It is essential to have a thorough understanding of the turbine performance and wake properties before determining the array arrangement for tidal farms. In this thesis, flow behavior in the wake of a counter-rotating dual rotor horizontal axis tidal turbine is studied by numerically solving the Reynolds Averaged Navier Stokes (RANS) Equations. The rotational effects of the turbine are modeled using the sliding mesh technique. The realizable k-epsilon model is employed to solve the closure problem. The methodology is validated against experimental data measured in open channel tests conducted at the St. Anthony Falls Laboratory of the University of Minnesota, in collaboration with Sandia National Laboratory, to investigate the turbine efficiency and the physical dynamics of the wake. The transient performance of the turbine is predicted with good accuracy using the sliding mesh model, with some level of disagreement found in predicting the velocity deficit in the flow. The limitations of accurately predicting the turbulent flow properties for the turbine are addressed and the sliding mesh technique is proven to capture effectively the different coherent structures in the wake. The qualitative agreement of the method suggests that this model can be used to explore turbine design and wake characteristics over various parameters in a cost-effective manner. This method can also provide critical parameters needed for designing efficient tidal farms.

Book An Evaluation of the U S  Department of Energy s Marine and Hydrokinetic Resource Assessments

Download or read book An Evaluation of the U S Department of Energy s Marine and Hydrokinetic Resource Assessments written by National Research Council and published by National Academies Press. This book was released on 2013-04-23 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Increasing renewable energy development, both within the United States and abroad, has rekindled interest in the potential for marine and hydrokinetic (MHK) resources to contribute to electricity generation. These resources derive from ocean tides, waves, and currents; temperature gradients in the ocean; and free-flowing rivers and streams. One measure of the interest in the possible use of these resources for electricity generation is the increasing number of permits that have been filed with the Federal Energy Regulatory Commission (FERC). As of December 2012, FERC had issued 4 licenses and 84 preliminary permits, up from virtually zero a decade ago. However, most of these permits are for developments along the Mississippi River, and the actual benefit realized from all MHK resources is extremely small. The first U.S. commercial gridconnected project, a tidal project in Maine with a capacity of less than 1 megawatt (MW), is currently delivering a fraction of that power to the grid and is due to be fully installed in 2013. As part of its assessment of MHK resources, DOE asked the National Research Council (NRC) to provide detailed evaluations. In response, the NRC formed the Committee on Marine Hydrokinetic Energy Technology Assessment. As directed in its statement of task (SOT), the committee first developed an interim report, released in June 2011, which focused on the wave and tidal resource assessments (Appendix B). The current report contains the committee's evaluation of all five of the DOE resource categories as well as the committee's comments on the overall MHK resource assessment process. This summary focuses on the committee's overarching findings and conclusions regarding a conceptual framework for developing the resource assessments, the aggregation of results into a single number, and the consistency across and coordination between the individual resource assessments. Critiques of the individual resource assessment, further discussion of the practical MHK resource base, and overarching conclusions and recommendations are explained in An Evaluation of the U.S. Department of Energy's Marine and Hydrokinetic Resource Assessment.

Book Optimization  Modeling  and Control of Cross flow Turbine Arrays

Download or read book Optimization Modeling and Control of Cross flow Turbine Arrays written by Isabel Scherl and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to understand unsteady fluid flows is foundational to advancing technologies in energy, health, transportation, and defense. This work uses data-driven methods (i.e., machine learning) to interpret and control unsteady fluid flows through experiments. Specifically, these methods are used to control, optimize, and model cross-flow turbines. Cross-flow turbines (i.e. vertical axis turbines), are devices that can be used to convert the kinetic energy in wind to electricity. A key advantage of cross-flow turbines over axial-flow turbines is that they can efficiently operate in close-proximity in arrays. We demonstrate how data-driven methods can be used to efficiently explore, model, and interpret the high-dimensional space cross-flow turbine dynamics occupy through the following three projects. First, robust principal component analysis (RPCA), a method borrowed from robust statistics, is used to improve flow-field data by leveraging global coherent structures to identify and replace spurious data points. We apply RPCA filtering to a range of fluid simulations and experiments of varying complexities and assess the accuracy of low-rank structure recovery. First, we analyze direct numerical simulations of flow past a circular cylinder at Reynolds number 100 with artificial outliers, alongside similar particle image velocimetry (PIV) measurements at Reynolds number 413. Next, we apply RPCA filtering to a turbulent channel flow simulation from the Johns Hopkins Turbulence database, demonstrating that dominant coherent structures are preserved in the low-rank matrix. Finally, we investigate PIV measurements behind a two-bladed cross-flow turbine that exhibits both broadband and coherent phenomena. We demonstrate that more persistent dynamics can be identified when RPCA is utilized in lieu of traditional processing methods. In all cases, both simulated and experimental, we find that RPCA filtering extracts dominant coherent structures and identifies and fills in incorrect or missing measurements. Second, the performance of a two-turbine array in a recirculating water channel was experimentally optimized across 64 unique array configurations using a hardware-in-the-loop approach. For each configuration, turbine performance was optimized using tip-speed ratio control, where the rotation rate for each turbine is optimized individually, and using coordinated control, where the turbines are optimized to operate at synchronous rotation rates but with a phase difference. For each configuration and control strategy, the consequences of co- and counter-rotation were also evaluated. Arrays with well-considered geometries and control strategies are found to outperform isolated turbines by up to 30%. Third, the performance and wake of a two-turbine array in a fence configuration (side-by-side) are characterized. The turbines are operated under coordinated control. Measurements were made with turbines co-rotating, counter-rotating with the blades advancing upstream at the array midline, and counter-rotating with the blades retreating downstream at the array midline. From the performance and wake data, we found individual turbine and array efficiency to depend significantly on rotation direction and phase difference. Persistent dynamics that exist across all flow fields, as well as differences between cases are identified. Each of these projects demonstrate how data-driven methods can be used to explore, model, and interpret cross-flow turbine dynamics and other fluid systems.

Book Turbine Efficiency Analysis by Numerical Modeling Method

Download or read book Turbine Efficiency Analysis by Numerical Modeling Method written by Vasiliy I. Maslov and published by LAP Lambert Academic Publishing. This book was released on 2014-03-04 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last time numerical modeling method of aerodynamic processes gains spreading. This emergence is caused by rapid development of computer facilities and progress in development of numerical methods for the solution of aerodynamic tasks. In the present work numerical methods were used. The choice of this subject is caused by that attention which is paid to experimental data about non-uniformity of flow parameters in flowing part of the turbine. It is considered that the non-uniform distribution of flow parameters by radius leads to decrease of stage efficiency. However, experimental data on this matter are absent. This work is attempt to fill this shortcoming.

Book On the Effects of Unsteady Flow Conditions on the Performance of a Cross Flow Hydrokinetic Turbine

Download or read book On the Effects of Unsteady Flow Conditions on the Performance of a Cross Flow Hydrokinetic Turbine written by Benjamin H. Bailin and published by . This book was released on 2017 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrokinetic turbines convert the energy of flowing water into usable electricity. Axial flow and cross flow turbines are the most common forms of hydroNinetic turbine, however cross flow turbine performance and the impact of surface waves are not well understood. Tests were conducted to observe the effects of waves on the performance characteristics of a cross flow turbine promulgated by the Department of Energy’s Reference Model Project, specifically Reference Model 2. Testing of a 1:6 scale model was conducted in the large towing tank in the USNA Hydromechanics Laboratory. Baseline (no wave) turbine performance was compared to published data on the same model turbine. Additionally, tests were conducted with incident waves and at various turbine depths and various tow speeds. The average turbine performance characteristics improved slightly as depth decreased due to acceleration of the constricted flow near the surface. Waves did not significantly change the performance of the turbine when averaged over of an entire cycle and several wave periods. This was the case even though the test waves created a velocity shear across the entire span of the blade. The waves were found to impart cyclic signatures in the torque measurement which may have consequences for instantaneous blade loading and power output from the device. A computational model was developed to predict turbine performance and compares favorably to the experiment.

Book Proceedings from the International Conference on Hydro and Renewable Energy

Download or read book Proceedings from the International Conference on Hydro and Renewable Energy written by Bri-Mathias Hodge and published by Springer Nature. This book was released on with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optimization and Computational Fluid Dynamics

Download or read book Optimization and Computational Fluid Dynamics written by Dominique Thévenin and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.

Book Vertical Axis Hydrokinetic Turbines

Download or read book Vertical Axis Hydrokinetic Turbines written by Mabrouk Mosbahi; Ahmed and published by . This book was released on 2021-12-14 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook is a guide to numerical and experimental processes that are used to analyze and improve the efficiency of vertical axis rotors. Chapters present information that is required to optimize the geometrical parameters of rotors or understand how to augment upstream water velocity. The authors of this volume present a numerical model to characterize the water flow around the vertical axis rotors using commercial CFD code in Ansys Fluent®. The software has been used to select adequate parameters and perform computational simulations of spiral Darrieus turbines. The contents of the volume explain the experimental procedure carried out to evaluate the performance of the spiral Darrieus turbine, how to characterize the water flow in the vicinity of the tested turbine and the method to assess the spiral angle influence on the turbine performance parameters. Results for different spiral angles (ranging from 10° to 40°) are presented. This volume is a useful handbook for engineers involved in power plant design and renewable energy sectors who are studying the computational fluid dynamics of vertical axis turbines (such as Darrieus turbines) that are used in hydropower projects. Key features: - 4 chapters that cover the numerical and experimental analysis of vertical axis rotors and hydrokinetic turbines - Simple structured layout for easy reading (methodology, models and results) - Bibliographic study to introduce the reader to the subject - A wide range of parameters included in experiments - A comprehensive appendix of tables for mechanical parameters, statistical models, rotor parameters and geometric details.

Book Proceedings of the International Conference on Sustainable Environment  Agriculture and Tourism  ICOSEAT 2022

Download or read book Proceedings of the International Conference on Sustainable Environment Agriculture and Tourism ICOSEAT 2022 written by Arifin Dwi Saputro and published by Springer Nature. This book was released on 2023-02-10 with total page 1023 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an open access book. ICOSEAT 2022 was held on July 21–23, 2022 in Bangka Island, one of the wonderful places of Indonesia. Articles in the field of Agroindustry and Appropriate Technology 4.0; Environmental and Mining Engineering; Sustainable Development and Tourism Management; Agriculture and Food Engineering; and Marine, Aquaculture and Biological Science. ICOSEAT provides a forum for Academic, Business and Government to present and discuss topics on recent development in those fields.

Book Experimental and Analytical Study of Helical Cross flow Turbines for a Tidal Micropower Generation System

Download or read book Experimental and Analytical Study of Helical Cross flow Turbines for a Tidal Micropower Generation System written by Adam L. Niblick and published by . This book was released on 2012 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study investigates the feasibility of a micro-scale tidal hydrokinetic generator to power autonomous oceanographic instrumentation, with emphasis on turbine design and performance. This type of "micropower" system is intended to provide continuous power on the order of 20 Watts. System components are reviewed and include turbine, electrical generator, gearbox, controller, converter, and battery bank. A steady-state model predicts system energy storage and power output in a mixed, mainly semidiurnal tidal regime with peak currents of 1.5 m/s. Among several turbine designs reviewed, a helical cross-flow turbine is selected, due to its self-start capability, ability to accept inflow from any direction, and power performance. Parameters impacting helical turbine design include radius, blade profile and pitch, aspect ratio, helical pitch, number of blades, solidity ratio, blade wrap ratio, strut design, and shaft diameter. The performance trade-offs of each are compared. A set of three prototype-scale turbines (two three-bladed designs, with 15% and 30% solidity, and a four-bladed design with 30% solidity and higher helical pitch) and several strut and shaft configurations were fabricated and tested in a water flume capable of flow rates up to 0.8 m/s. Tests included performance characterization of the rotating turbines from freewheel to stall, static torque characterization as a function of azimuthal angle, performance degradation associated with inclination angles up to 10° from vertical, and stream-wise wake velocity profiles. A four-bladed turbine with 60° helical pitch, 30% solidity, and circular plate "end cap" provided the best performance; this design attained efficiency of 24% in 0.8 m/s flow and experienced smaller performance reductions for tilted orientations relative to other variants. Maximum turbine efficiency increased with increased flume velocity. A free-vortex model was modified to simulate the helical turbine performance. Model results were compared to experimental data for various strut design and inflow velocities, and performance was extrapolated to higher flume velocities and a full-scale turbine (0.7 m2 relative to 0.04 m2 in flume tests). The model predicts experimental trends correctly but deviates from experimental values for some conditions, indicating the need for further study of secondary effects for a high chord-to-radius ratio turbine.