EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis  Modeling and Stability of Fractional Order Differential Systems 1

Download or read book Analysis Modeling and Stability of Fractional Order Differential Systems 1 written by Jean-Claude Trigeassou and published by John Wiley & Sons. This book was released on 2019-08-06 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces an original fractional calculus methodology (‘the infinite state approach’) which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation.

Book Analysis  Modeling and Stability of Fractional Order Differential Systems 2

Download or read book Analysis Modeling and Stability of Fractional Order Differential Systems 2 written by Jean-Claude Trigeassou and published by John Wiley & Sons. This book was released on 2020-02-26 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces an original fractional calculus methodology (the infinite state approach) which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation. With this approach, fundamental issues such as system state interpretation and system initialization – long considered to be major theoretical pitfalls – have been solved easily. Although originally introduced for numerical simulation and identification of FDEs, this approach also provides original solutions to many problems such as the initial conditions of fractional derivatives, the uniqueness of FDS transients, formulation of analytical transients, fractional differentiation of functions, state observation and control, definition of fractional energy, and Lyapunov stability analysis of linear and nonlinear fractional order systems. This second volume focuses on the initialization, observation and control of the distributed state, followed by stability analysis of fractional differential systems.

Book Analysis  Modeling and Stability of Fractional Order Differential Systems 1

Download or read book Analysis Modeling and Stability of Fractional Order Differential Systems 1 written by Jean-Claude Trigeassou and published by John Wiley & Sons. This book was released on 2019-09-11 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces an original fractional calculus methodology (‘the infinite state approach’) which is applied to the modeling of fractional order differential equations (FDEs) and systems (FDSs). Its modeling is based on the frequency distributed fractional integrator, while the resulting model corresponds to an integer order and infinite dimension state space representation. This original modeling allows the theoretical concepts of integer order systems to be generalized to fractional systems, with a particular emphasis on a convolution formulation.

Book Distributed Order Dynamic Systems

Download or read book Distributed Order Dynamic Systems written by Zhuang Jiao and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed-order differential equations, a generalization of fractional calculus, are of increasing importance in many fields of science and engineering from the behaviour of complex dielectric media to the modelling of nonlinear systems. This Brief will broaden the toolbox available to researchers interested in modeling, analysis, control and filtering. It contains contextual material outlining the progression from integer-order, through fractional-order to distributed-order systems. Stability issues are addressed with graphical and numerical results highlighting the fundamental differences between constant-, integer-, and distributed-order treatments. The power of the distributed-order model is demonstrated with work on the stability of noncommensurate-order linear time-invariant systems. Generic applications of the distributed-order operator follow: signal processing and viscoelastic damping of a mass–spring set up. A new general approach to discretization of distributed-order derivatives and integrals is described. The Brief is rounded out with a consideration of likely future research and applications and with a number of MATLAB® codes to reduce repetitive coding tasks and encourage new workers in distributed-order systems.

Book The Analysis of Fractional Differential Equations

Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Book Fractional Order Systems

Download or read book Fractional Order Systems written by Ivo Petráš and published by MDPI. This book was released on 2019-10-29 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is focused on fractional order systems. Historically, fractional calculus has been recognized since the inception of regular calculus, with the first written reference dated in September 1695 in a letter from Leibniz to L’Hospital. Nowadays, fractional calculus has a wide area of applications in areas such as physics, chemistry, bioengineering, chaos theory, control systems engineering, and many others. In all those applications, we deal with fractional order systems in general. Moreover, fractional calculus plays an important role even in complex systems and therefore allows us to develop better descriptions of real-world phenomena. On that basis, fractional order systems are ubiquitous, as the whole real world around us is fractional. Due to this reason, it is urgent to consider almost all systems as fractional order systems. This Special Issue explores applications of such systems to control, synchronization, and various mathematical models, as for instance, MRI, long memory process, diffusion.

Book Functional and Impulsive Differential Equations of Fractional Order

Download or read book Functional and Impulsive Differential Equations of Fractional Order written by Ivanka Stamova and published by CRC Press. This book was released on 2017-03-03 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. It manifests different constructive methods by demonstrating how these techniques can be applied to investigate qualitative properties of the solutions of fractional systems. Since many applications have been included, the demonstrated techniques and models can be used in training students in mathematical modeling and in the study and development of fractional-order models.

Book Differential Equation Models in Applied Mathematics

Download or read book Differential Equation Models in Applied Mathematics written by Fasma Diele and published by . This book was released on 2022 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book contains the articles published in the Special Issue “Differential Equation Models in Applied Mathematics: Theoretical and Numerical Challenges” of the MDPI journal Mathematics. The Special Issue aimed to highlight old and new challenges in the formulation, solution, understanding, and interpretation of models of differential equations (DEs) in different real world applications. The technical topics covered in the seven articles published in this book include: asymptotic properties of high order nonlinear DEs, analysis of backward bifurcation, and stability analysis of fractional-order differential systems. Models oriented to real applications consider the chemotactic between cell species, the mechanism of on-off intermittency in food chain models, and the occurrence of hysteresis in marketing. Numerical aspects deal with the preservation of mass and positivity and the efficient solution of Boundary Value Problems (BVPs) for optimal control problems. I hope that this collection will be useful for those working in the area of modelling real-word applications through differential equations and those who care about an accurate numerical approximation of their solutions. The reading is also addressed to those willing to become familiar with differential equations which, due to their predictive abilities, represent the main mathematical tool for applying scenario analysis to our changing world.

Book Fractional Order Nonlinear Systems

Download or read book Fractional Order Nonlinear Systems written by Ivo Petráš and published by Springer Science & Business Media. This book was released on 2011-05-30 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. Ivo Petráš is an Associate Professor of automatic control and the Director of the Institute of Control and Informatization of Production Processes, Faculty of BERG, Technical University of Košice, Slovak Republic. His main research interests include control systems, industrial automation, and applied mathematics.

Book Fractional Differential Equations

Download or read book Fractional Differential Equations written by Mouffak Benchohra and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-11-20 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fractional order Modeling and Control of Dynamic Systems

Download or read book Fractional order Modeling and Control of Dynamic Systems written by Aleksei Tepljakov and published by Springer. This book was released on 2017-02-08 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on an outstanding research devoted to modeling and control of dynamic systems using fractional-order calculus. It describes the development of model-based control design methods for systems described by fractional dynamic models. More than 300 years had passed since Newton and Leibniz developed a set of mathematical tools we now know as calculus. Ever since then the idea of non-integer derivatives and integrals, universally referred to as fractional calculus, has been of interest to many researchers. However, due to various issues, the usage of fractional-order models in real-life applications was limited. Advances in modern computer science made it possible to apply efficient numerical methods to the computation of fractional derivatives and integrals. This book describes novel methods developed by the author for fractional modeling and control, together with their successful application in real-world process control scenarios.

Book Computation and Modeling for Fractional Order Systems

Download or read book Computation and Modeling for Fractional Order Systems written by Snehashish Chakraverty and published by Elsevier. This book was released on 2024-03-01 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computation and Modeling for Fractional Order Systems provides readers with problem-solving techniques for obtaining exact and/or approximate solutions of governing equations arising in fractional dynamical systems presented using various analytical, semi-analytical, and numerical methods. In this regard, this book brings together contemporary and computationally efficient methods for investigating real-world fractional order systems in one volume. Fractional calculus has gained increasing popularity and relevance over the last few decades, due to its well-established applications in various fields of science and engineering. It deals with the differential and integral operators with non-integral powers. Fractional differential equations are the pillar of various systems occurring in a wide range of science and engineering disciplines, namely physics, chemical engineering, mathematical biology, financial mathematics, structural mechanics, control theory, circuit analysis, and biomechanics, among others. The fractional derivative has also been used in various other physical problems, such as frequency-dependent damping behavior of structures, motion of a plate in a Newtonian fluid, PID controller for the control of dynamical systems, and many others. The mathematical models in electromagnetics, rheology, viscoelasticity, electrochemistry, control theory, Brownian motion, signal and image processing, fluid dynamics, financial mathematics, and material science are well defined by fractional-order differential equations. Generally, these physical models are demonstrated either by ordinary or partial differential equations. However, modeling these problems by fractional differential equations, on the other hand, can make the physics of the systems more feasible and practical in some cases. In order to know the behavior of these systems, we need to study the solutions of the governing fractional models. The exact solution of fractional differential equations may not always be possible using known classical methods. Generally, the physical models occurring in nature comprise complex phenomena, and it is sometimes challenging to obtain the solution (both analytical and numerical) of nonlinear differential equations of fractional order. Various aspects of mathematical modeling that may include deterministic or uncertain (viz. fuzzy or interval or stochastic) scenarios along with fractional order (singular/non-singular kernels) are important to understand the dynamical systems. Computation and Modeling for Fractional Order Systems covers various types of fractional order models in deterministic and non-deterministic scenarios. Various analytical/semi-analytical/numerical methods are applied for solving real-life fractional order problems. The comprehensive descriptions of different recently developed fractional singular, non-singular, fractal-fractional, and discrete fractional operators, along with computationally efficient methods, are included for the reader to understand how these may be applied to real-world systems, and a wide variety of dynamical systems such as deterministic, stochastic, continuous, and discrete are addressed by the authors of the book.

Book Fractional Dynamics and Control

Download or read book Fractional Dynamics and Control written by Dumitru Baleanu and published by Springer Science & Business Media. This book was released on 2011-11-19 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional Dynamics and Control provides a comprehensive overview of recent advances in the areas of nonlinear dynamics, vibration and control with analytical, numerical, and experimental results. This book provides an overview of recent discoveries in fractional control, delves into fractional variational principles and differential equations, and applies advanced techniques in fractional calculus to solving complicated mathematical and physical problems.Finally, this book also discusses the role that fractional order modeling can play in complex systems for engineering and science.

Book The Craft of Fractional Modelling in Science and Engineering

Download or read book The Craft of Fractional Modelling in Science and Engineering written by Jordan Hristov and published by MDPI. This book was released on 2018-06-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "The Craft of Fractional Modelling in Science and Engineering" that was published in Fractal Fract

Book Numerical Methods for Fractal Fractional Differential Equations and Engineering

Download or read book Numerical Methods for Fractal Fractional Differential Equations and Engineering written by Muhammad Altaf Khan and published by CRC Press. This book was released on 2023-05-16 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the simulation and modeling of novel chaotic systems within the frame of fractal-fractional operators. The methods used, their convergence, stability, and error analysis are given, and this is the first book to offer mathematical modeling and simulations of chaotic problems with a wide range of fractal-fractional operators, to find solutions. Numerical Methods for Fractal-Fractional Differential Equations and Engineering: Simulations and Modeling provides details for stability, convergence, and analysis along with numerical methods and their solution procedures for fractal-fractional operators. The book offers applications to chaotic problems and simulations using multiple fractal-fractional operators and concentrates on models that display chaos. The book details how these systems can be predictable for a while and then can appear to become random. Practitioners, engineers, researchers, and senior undergraduate and graduate students from mathematics and engineering disciplines will find this book of interest._

Book Theory and Applications of Fractional Differential Equations

Download or read book Theory and Applications of Fractional Differential Equations written by A.A. Kilbas and published by Elsevier. This book was released on 2006-02-16 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work aims to present, in a systematic manner, results including the existence and uniqueness of solutions for the Cauchy Type and Cauchy problems involving nonlinear ordinary fractional differential equations.

Book Methods of Mathematical Modelling

Download or read book Methods of Mathematical Modelling written by Harendra Singh and published by CRC Press. This book was released on 2019-09-17 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features original research articles on the topic of mathematical modelling and fractional differential equations. The contributions, written by leading researchers in the field, consist of chapters on classical and modern dynamical systems modelled by fractional differential equations in physics, engineering, signal processing, fluid mechanics, and bioengineering, manufacturing, systems engineering, and project management. The book offers theory and practical applications for the solutions of real-life problems and will be of interest to graduate level students, educators, researchers, and scientists interested in mathematical modelling and its diverse applications. Features Presents several recent developments in the theory and applications of fractional calculus Includes chapters on different analytical and numerical methods dedicated to several mathematical equations Develops methods for the mathematical models which are governed by fractional differential equations Provides methods for models in physics, engineering, signal processing, fluid mechanics, and bioengineering Discusses real-world problems, theory, and applications