EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis and Simulation of Crystalline Silicon Solar Cells

Download or read book Analysis and Simulation of Crystalline Silicon Solar Cells written by Marc Rüdiger and published by . This book was released on 2014-03 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicon Heterojunction Solar Cells

Download or read book Silicon Heterojunction Solar Cells written by W.R. Fahrner and published by Trans Tech Publications Ltd. This book was released on 2006-08-15 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of today must face up to two contradictory energy problems: on the one hand, there is the sharply growing consumer demand in countries such as China and India. On the other hand, natural resources are dwindling. Moreover, many of those countries which still possess substantial gas and oil supplies are politically unstable. As a result, renewable natural energy sources have received great attention. Among these, solar-cell technology is one of the most promising candidates. However, there still remains the problem of the manufacturing costs of such cells. Many attempts have been made to reduce the production costs of “conventional” solar cells (manufactured from monocrystalline silicon using diffusion methods) by instead using cheaper grades of silicon, and simpler pn-junction fabrication. That is the ‘hero’ of this book; the heterojunction solar cell.

Book High Efficiency Crystalline Silicon Solar Cells

Download or read book High Efficiency Crystalline Silicon Solar Cells written by Eun-Chel Cho and published by MDPI. This book was released on 2021-01-06 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.

Book Crystalline Silicon Solar Cells

Download or read book Crystalline Silicon Solar Cells written by Saleem Hussain Zaidi and published by Springer Nature. This book was released on 2021-08-02 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on crystalline silicon solar cell science and technology. It is written from the perspective of an experimentalist with extensive hands-on experience in modeling, fabrication, and characterization. A practical approach to solar cell fabrication is presented in terms of its three components: materials, electrical, and optical. The materials section describes wafer processing methods including saw damage removal, texturing, diffusion, and surface passivation. The electrical section focuses on formation of ohmic contacts on n and p-doped surfaces. The optical section illustrates light interaction with textured silicon surfaces in terms of geometrical, diffractive and physical optics, transmission, and surface photovoltage (SPV) spectroscopy. A final chapter analyzes performance of solar cells, fabricated with a wide range of process parameters. A brief economic analysis on the merits of crystalline silicon-based photovoltaic technology as a cottage industry is also included./div This professional reference will be an important resource for practicing engineers and technicians working with solar cell and PV manufacturing and renewable energy technologies, as well as upper-level engineering and material science students. Presents a practical approach to solar cell fabrication, and characterization; Offers modular methodology with detailed equipment and process parameters supported by experimental results; Includes processing diagrams and tables for 16% efficient solar cell fabrication.

Book Crystalline Silicon Solar Cells

Download or read book Crystalline Silicon Solar Cells written by Armin G. Aberle and published by . This book was released on 1999 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Amorphous and Microcrystalline Silicon Solar Cells  Modeling  Materials and Device Technology

Download or read book Amorphous and Microcrystalline Silicon Solar Cells Modeling Materials and Device Technology written by Ruud E.I. Schropp and published by Springer. This book was released on 2016-07-18 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: Amorphous silicon solar cell technology has evolved considerably since the first amorphous silicon solar cells were made at RCA Laboratories in 1974. Scien tists working in a number of laboratories worldwide have developed improved alloys based on hydrogenated amorphous silicon and microcrystalline silicon. Other scientists have developed new methods for growing these thin films while yet others have developed new photovoltaic (PV) device structures with im proved conversion efficiencies. In the last two years, several companies have constructed multi-megawatt manufacturing plants that can produce large-area, multijunction amorphous silicon PV modules. A growing number of people be lieve that thin-film photovoltaics will be integrated into buildings on a large scale in the next few decades and will be able to make a major contribution to the world's energy needs. In this book, Ruud E. I. Schropp and Miro Zeman provide an authoritative overview of the current status of thin film solar cells based on amorphous and microcrystalline silicon. They review the significant developments that have occurred during the evolution of the technology and also discuss the most im portant recent innovations in the deposition of the materials, the understanding of the physics, and the fabrication and modeling of the devices.

Book Crystalline Silicon Solar Cells

Download or read book Crystalline Silicon Solar Cells written by Adolf Goetzberger and published by Wiley. This book was released on 1998-04-08 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: As environmental concerns escalate, solar power is increasingly seen as an attractive alternative energy source. Crystalline Silicon Solar Cells addresses the practical and theoretical issues fundamental to the viable conversion of sunlight into electricity. Written by three internationally renowned experts, this valuable reference profits from results and experience gained from research at the Fraunhofer Institute for Solar Energy Systems. Features include: Introduction to the principles of photovoltaics, providing a grounding in semiconductor physics for the novice reader Special emphasis on the methods of attaining high efficiency and thereby cost-effective solar power Examination of the physics, design and technology of crystalline silicon solar cells, in particular thin film cells Survey of a selection of alternative cell types equipping the reader with a complete overview Detailed description of measuring and analysis techniques to facilitate determining physical semiconductor and solar cell parameters Accessible to those with a basic knowledge of physics and mathematics, this is an excellent introductory book for students studying solid state and semiconductor physics. All those working in photovoltaic development and production will find Crystalline Silicon Solar Cells an indispensable resource.

Book Loss Analysis of Crystalline Silicon Solar Cells using Photoconductance and Quantum Efficiency Measurements

Download or read book Loss Analysis of Crystalline Silicon Solar Cells using Photoconductance and Quantum Efficiency Measurements written by and published by Cuvillier Verlag. This book was released on 2003-08-19 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Thin Film Crystalline Silicon Solar Cells

Download or read book Thin Film Crystalline Silicon Solar Cells written by Rolf Brendel and published by John Wiley & Sons. This book was released on 2011-02-15 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the physics of silicon solar cells focuses on thin cells, while reviewing and discussing the current status of the important technology. An analysis of the spectral quantum efficiency of thin solar cells is given as well as a full set of analytical models. This is the first comprehensive treatment of light trapping techniques for the enhancement of the optical absorption in thin silicon films.

Book Numerical Simulation and Analysis of High efficiency Silicon Solar Cells and Tandem Devices

Download or read book Numerical Simulation and Analysis of High efficiency Silicon Solar Cells and Tandem Devices written by Christoph Alexander Meßmer and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical Analysis of Limiting Efficiency  Simulation of Characteristics and Process Technique for Crystalline Silicon Solar Cell

Download or read book Theoretical Analysis of Limiting Efficiency Simulation of Characteristics and Process Technique for Crystalline Silicon Solar Cell written by 盧俊安 and published by . This book was released on 2010 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells

Download or read book Physics and Technology of Amorphous Crystalline Heterostructure Silicon Solar Cells written by Wilfried G. J. H. M. van Sark and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today’s solar cell multi-GW market is dominated by crystalline silicon (c-Si) wafer technology, however new cell concepts are entering the market. One very promising solar cell design to answer these needs is the silicon hetero-junction solar cell, of which the emitter and back surface field are basically produced by a low temperature growth of ultra-thin layers of amorphous silicon. In this design, amorphous silicon (a-Si:H) constitutes both „emitter“ and „base-contact/back surface field“ on both sides of a thin crystalline silicon wafer-base (c-Si) where the electrons and holes are photogenerated; at the same time, a-Si:H passivates the c-Si surface. Recently, cell efficiencies above 23% have been demonstrated for such solar cells. In this book, the editors present an overview of the state-of-the-art in physics and technology of amorphous-crystalline heterostructure silicon solar cells. The heterojunction concept is introduced, processes and resulting properties of the materials used in the cell and their heterointerfaces are discussed and characterization techniques and simulation tools are presented.

Book The Physics Of Solar Cells

    Book Details:
  • Author : Jenny A Nelson
  • Publisher : World Scientific Publishing Company
  • Release : 2003-05-09
  • ISBN : 1848168233
  • Pages : 387 pages

Download or read book The Physics Of Solar Cells written by Jenny A Nelson and published by World Scientific Publishing Company. This book was released on 2003-05-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.

Book Silicon solar cell process development  fabrication  and analysis

Download or read book Silicon solar cell process development fabrication and analysis written by Optical Coating Laboratory. Photoelectronics Division and published by . This book was released on 1979 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Metal Impurities in N type Crystalline Silicon for Photovoltaics

Download or read book Metal Impurities in N type Crystalline Silicon for Photovoltaics written by Ashley Elizabeth Morishige and published by . This book was released on 2016 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystalline silicon is the dominant technology in the rapidly-growing photovoltaics (PV) industry, but significant cost reduction is still required before widespread grid parity is achieved. One-quarter of the cost of a PV module is the Si wafer. One way to reduce the cost/kWh of PV is to identify a higher-efficiency "drop-in" substitute for the currently dominant p-type multicrystalline silicon (mc-Si) wafer. This thesis explores one class of wafer substitute: n-type silicon. This material is thought to have higher defect tolerance than p-type, but practical mc-Si cell efficiencies have remained lower than in p-type. This thesis explores why, using a combination of simulation and experiment. In particular, synchrotron-based micro-X-ray fluorescence mapping is used to non-destructively evaluate metal impurity evolution during processing. This thesis demonstrates that metal impurity redistribution during solar cell processing is similar in n- and p-type mc-Si but the relative electrical impact of point defect and precipitated impurities is different, requiring different approaches to processing. It has been hypothesized and shown indirectly that metal impurities redistribute similarly in n- and p-type mc-Si during processing. To confirm this hypothesis, I combined Fermi-level analysis with direct measurements of the metal distribution before and after an industrially-relevant range of gettering processes. This study confirmed that the understanding of metal redistribution developed for p-type mc-Si is directly applicable to n-type mc-Si. To improve the understanding of metal impurity movement during solar cell processing, I developed a tool using Sentaurus TCAD software to visualize in 2D metal redistribution and the resulting recombination activity. I also performed an analytical review of the state of the art of crystalline silicon solar cell process simulation tools. The analysis elucidated the key physics of impurity gettering during solar cell processing and enabled guidelines for efficient, yet accurate, solar cell process simulations. To quantify the recombination activity of precipitated iron in n-type crystalline silicon, I directly measured the iron content and recombination strength of iron precipitates in n-type crystalline silicon using a suite of micro-characterization tools. I found that iron-containing precipitates are highly recombination active in n-type Si and that the precipitate size is correlated with its recombination strength. To enable this study, I benchmarked the use of a new high-throughput synchrotron-based data collection mode called on-the-fly scanning. To bring the level of sophistication of predictive simulation for p-type mc-Si to that of n-type mc-Si, I developed a simulation tool that calculates the redistribution of iron throughout the solar cell process and the resulting injection-dependent electrical performance of the wafer for both p- and n-type Si. Analysis using this tool indicates that p-type mc-Si usually requires point defect remediation during a slow cooling process, but for n-type mc-Si, dissolving iron-rich precipitates during shorter, higher temperature processing is often sufficient. Efficiency entitlement curves predict that n-type mc-Si can support 20% efficient solar cells. Finally, knowledge of defects developed for Si wafers was applied to a key challenge facing the PV industry at the PV system level. In the field, degradation of next-generation industrial p-type mc-Si PV modules has been observed. Leveraging the fundamental understanding of the physics of impurities in Si wafers, the recombination parameters of the root-cause defect were quantified. Building on the rich literature of p-type multicrystalline silicon, this thesis enables predictive engineering of all crystalline silicon materials from wafer growth to module performance in the field.

Book Crystalline silicon solar cells

Download or read book Crystalline silicon solar cells written by Armin Gerhard Aberle and published by . This book was released on 1999 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: