EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis and Mathematical Models of Canned Electrical Machine Drives

Download or read book Analysis and Mathematical Models of Canned Electrical Machine Drives written by Qiang Yu and published by Springer. This book was released on 2018-11-19 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the electromagnetic and thermal modeling and analysis of electrical machines, especially canned electrical machines for hydraulic pump applications. It addresses both the principles and engineering practice, with more weight placed on mathematical modeling and theoretical analysis. This is achieved by providing in-depth studies on a number of major topics such as: can shield effect analysis, machine geometry optimization, control analysis, thermal and electromagnetic network models, magneto motive force modeling, and spatial magnetic field modeling. For the can shield effect analysis, several cases are studied in detail, including classical canned induction machines, as well as state-of-the-art canned permanent magnet machines and switched reluctance machines. The comprehensive and systematic treatment of the can effect for canned electrical machines is one of the major features of this book, which is particularly suited for readers who are interested in learning about electrical machines, especially for hydraulic pumping, deep-sea exploration, mining and the nuclear power industry. The book offers a valuable resource for researchers, engineers, and graduate students in the fields of electrical machines, magnetic and thermal engineering, etc.

Book Electric Machines and Drives

Download or read book Electric Machines and Drives written by Shaahin Filizadeh and published by CRC Press. This book was released on 2013-02-20 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric machines have a ubiquitous presence in our modern daily lives, from the generators that supply electricity to motors of all sizes that power countless applications. Providing a balanced treatment of the subject, Electric Machines and Drives: Principles, Control, Modeling, and Simulation takes a ground-up approach that emphasizes fundamental principles. The author carefully deploys physical insight, mathematical rigor, and computer simulation to clearly and effectively present electric machines and drive systems. Detailing the fundamental principles that govern electric machines and drives systems, this book: Describes the laws of induction and interaction and demonstrates their fundamental roles with numerous examples Explores dc machines and their principles of operation Discusses a simple dynamic model used to develop speed and torque control strategies Presents modeling, steady state based drives, and high-performance drives for induction machines, highlighting the underlying physics of the machine Includes coverage of modeling and high performance control of permanent magnet synchronous machines Highlights the elements of power electronics used in electric drive systems Examines simulation-based optimal design and numerical simulation of dynamical systems Suitable for a one semester class at the senior undergraduate or a graduate level, the text supplies simulation cases that can be used as a base and can be supplemented through simulation assignments and small projects. It includes end-of-chapter problems designed to pick up on the points presented in chapters and develop them further or introduce additional aspects. The book provides an understanding of the fundamental laws of physics upon which electric machines operate, allowing students to master the mathematical skills that their modeling and analysis requires.

Book Advanced Electric Drives

Download or read book Advanced Electric Drives written by Ned Mohan and published by John Wiley & Sons. This book was released on 2014-07-22 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: With nearly two-thirds of global electricity consumed by electric motors, it should come as no surprise that their proper control represents appreciable energy savings. The efficient use of electric drives also has far-reaching applications in such areas as factory automation (robotics), clean transportation (hybrid-electric vehicles), and renewable (wind and solar) energy resource management. Advanced Electric Drives utilizes a physics-based approach to explain the fundamental concepts of modern electric drive control and its operation under dynamic conditions. Author Ned Mohan, a decades-long leader in Electrical Energy Systems (EES) education and research, reveals how the investment of proper controls, advanced MATLAB and Simulink simulations, and careful forethought in the design of energy systems translates to significant savings in energy and dollars. Offering students a fresh alternative to standard mathematical treatments of dq-axis transformation of a-b-c phase quantities, Mohan’s unique physics-based approach “visualizes” a set of representative dq windings along an orthogonal set of axes and then relates their currents and voltages to the a-b-c phase quantities. Advanced Electric Drives is an invaluable resource to facilitate an understanding of the analysis, control, and modelling of electric machines. • Gives readers a “physical” picture of electric machines and drives without resorting to mathematical transformations for easy visualization • Confirms the physics-based analysis of electric drives mathematically • Provides readers with an analysis of electric machines in a way that can be easily interfaced to common power electronic converters and controlled using any control scheme • Makes the MATLAB/Simulink files used in examples available to anyone in an accompanying website • Reinforces fundamentals with a variety of discussion questions, concept quizzes, and homework problems

Book Electrical Machines

Download or read book Electrical Machines written by Dieter Gerling and published by Springer Science & Business Media. This book was released on 2014-09-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical Machines and Drives play a vital role in industry with an ever increasing importance. This fact necessitates the understanding of machine and drive principles by engineers of many different disciplines. Therefore, this book is intended to give a comprehensive deduction of these principles. Special attention is given to the precise mathematical deduction of the necessary formulae to calculate machines and drives, and to the discussion of simplifications (if applied) with the associated limits. So the book shows how the different machine topologies can be deduced from general fundamentals, and how they are linked. This book addresses graduate students, researchers and developers of Electrical Machines and Drives, who are interested in getting knowledge about the principles of machine and drive operation and in detecting the mathematical and engineering specialties of the different machine and drive topologies together with their mutual links. The detailed, but compact mathematical deduction, together with a distinct emphasis onto assumptions, simplifications and the associated limits, leads to a clear understanding of Electrical Machine and Drive topologies and characteristics.

Book Advanced Electrical Drives

Download or read book Advanced Electrical Drives written by Rik De Doncker and published by Springer Science & Business Media. This book was released on 2010-11-30 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc. Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances. Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms. From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.

Book Mathematical Models for the Design of Electrical Machines

Download or read book Mathematical Models for the Design of Electrical Machines written by Frédéric Dubas and published by MDPI. This book was released on 2021-03-15 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive set of articles reflecting the latest advances and developments in mathematical modeling and the design of electrical machines for different applications. The main models discussed are based on the: i) Maxwell–Fourier method (i.e., the formal resolution of Maxwell’s equations by using the separation of variables method and the Fourier’s series in 2-D or 3-D with a quasi-Cartesian or polar coordinate system); ii) electrical, thermal and magnetic equivalent circuit; iii) hybrid model. In these different papers, the numerical method and the experimental tests have been used as comparisons or validations.

Book Electrical Machines and Drives

Download or read book Electrical Machines and Drives written by Peter Vas and published by . This book was released on 1992 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: The operation and simulation of a.c. and d.c. machines and a large number of variable-speed drives (including some of the most recently introduced modern drives) are discussed here, and a general theory applicable during their steady-state and transient operation is presented. Although the detailed mathematical analysis given relies mainly on space-vector theory, the relationship to other theories, including the matrix theory of generalized machine theory, is also emphasized. Many of the equations are given in their state-variable or analytical forms so that they can be used directly for computer simulations or for hand calculations. Novel features of this book include descriptions of the "exact" and "simplified" performance analysis of a.c. machines and a large number of variable-speed drives; both large- and small-signal equations; magnetic saturation effects are incorporated into the different models of smooth-air-gap and salient-pole machines; and extension of the space-vector model to the double-cage induction machine and the salient-pole synchronous machine. It is also demonstrated how all the various machine models used in the matrix model of electrical machines can be obtained without having to use matrix transformations, while a systematic approach is given for the a priori deduction of all the transformations used in general machine theory. Electrical Machines and Drives can be used without any prior knowledge of space-vector or other theories; it is aimed at students, teachers, and those researchers in industry and universities who require a deep understanding of the various aspects of the operation and the theories of electrical machines and drives, and their simulation.

Book Modeling and High Performance Control of Electric Machines

Download or read book Modeling and High Performance Control of Electric Machines written by John Chiasson and published by John Wiley & Sons. This book was released on 2005-05-27 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling and High Performance Control of Electric Machines introduces you to both the modeling and control of electric machines. The direct current (DC) machine and the alternating current (AC) machines (induction, PM synchronous, and BLDC) are all covered in detail. The author emphasizes control techniques used for high-performance applications, specifically ones that require both rapid and precise control of position, speed, or torque. You'll discover how to derive mathematical models of the machines, and how the resulting models can be used to design control algorithms that achieve high performance. Graduate students studying power and control as well as practicing engineers in industry will find this a highly readable text on the operation, modeling, and control of electric machines. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department. Instructor Support materials are also available. Email [email protected]

Book Advanced Linear Machines and Drive Systems

Download or read book Advanced Linear Machines and Drive Systems written by Wei Xu and published by Springer Nature. This book was released on 2019-09-07 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects the latest theoretical and technological concepts in the design and control of various linear machines and drive systems. Discussing advances in the new linear machine topologies, integrated modeling, multi-objective optimization techniques, and high-performance control strategies, it focuses on emerging applications of linear machines in transportation and energy systems. The book presents both theoretical and practical/experimental results, providing a consistent compilation of fundamental theories, a compendium of current research and development activities as well as new directions to overcome critical limitations.

Book Electromechanical Systems  Electric Machines  and Applied Mechatronics

Download or read book Electromechanical Systems Electric Machines and Applied Mechatronics written by Sergey Edward Lyshevski and published by CRC Press. This book was released on 2018-02-06 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent trends in engineering show increased emphasis on integrated analysis, design, and control of advanced electromechanical systems, and their scope continues to expand. Mechatronics-a breakthrough concept-has evolved to attack, integrate, and solve a variety of emerging problems in engineering, and there appears to be no end to its application. It has become essential for all engineers to understand its basic theoretical standpoints and practical applications. Electromechanical Systems, Electric Machines, and Applied Mechatronics presents a unique combination of traditional engineering topics and the latest technologies, integrated to stimulate new advances in the analysis and design of state-of-the-art electromechanical systems. With a focus on numerical and analytical methods, the author develops the rigorous theory of electromechanical systems and helps build problem-solving skills. He also stresses simulation as a critical aspect of developing and prototyping advanced systems. He uses the MATLABTM environment for his examples and includes a MATLABTM diskette with the book, thus providing a solid introduction to this standard engineering tool. Readable, interesting, and accessible, Electromechanical Systems, Electric Machines, and Applied Mechatronics develops a thorough understanding of the integrated perspectives in the design and analysis of electromechanical systems. It covers the basic concepts in mechatronics, and with numerous worked examples, prepares the reader to use the results in engineering practice. Readers who master this book will know what they are doing, why they are doing it, and how to do it.

Book Multiphysics Simulation by Design for Electrical Machines  Power Electronics and Drives

Download or read book Multiphysics Simulation by Design for Electrical Machines Power Electronics and Drives written by Dr. Marius Rosu and published by John Wiley & Sons. This book was released on 2017-11-20 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents applied theory and advanced simulation techniques for electric machines and drives This book combines the knowledge of experts from both academia and the software industry to present theories of multiphysics simulation by design for electrical machines, power electronics, and drives. The comprehensive design approach described within supports new applications required by technologies sustaining high drive efficiency. The highlighted framework considers the electric machine at the heart of the entire electric drive. The book also emphasizes the simulation by design concept—a concept that frames the entire highlighted design methodology, which is described and illustrated by various advanced simulation technologies. Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives begins with the basics of electrical machine design and manufacturing tolerances. It also discusses fundamental aspects of the state of the art design process and includes examples from industrial practice. It explains FEM-based analysis techniques for electrical machine design—providing details on how it can be employed in ANSYS Maxwell software. In addition, the book covers advanced magnetic material modeling capabilities employed in numerical computation; thermal analysis; automated optimization for electric machines; and power electronics and drive systems. This valuable resource: Delivers the multi-physics know-how based on practical electric machine design methodologies Provides an extensive overview of electric machine design optimization and its integration with power electronics and drives Incorporates case studies from industrial practice and research and development projects Multiphysics Simulation by Design for Electrical Machines, Power Electronics and Drives is an incredibly helpful book for design engineers, application and system engineers, and technical professionals. It will also benefit graduate engineering students with a strong interest in electric machines and drives.

Book Electrical Machines and Drives

Download or read book Electrical Machines and Drives written by Jan A. Melkebeek and published by Springer. This book was released on 2018-01-20 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to offer a thorough study and reference textbook on electrical machines and drives. The basic idea is to start from the pure electromagnetic principles to derive the equivalent circuits and steady-state equations of the most common electrical machines (in the first parts). Although the book mainly concentrates on rotating field machines, the first two chapters are devoted to transformers and DC commutator machines. The chapter on transformers is included as an introduction to induction and synchronous machines, their electromagnetics and equivalent circuits. Chapters three and four offer an in-depth study of induction and synchronous machines, respectively. Starting from their electromagnetics, steady-state equations and equivalent circuits are derived, from which their basic properties can be deduced. The second part discusses the main power-electronic supplies for electrical drives, for example rectifiers, choppers, cycloconverters and inverters. Much attention is paid to PWM techniques for inverters and the resulting harmonic content in the output waveform. In the third part, electrical drives are discussed, combining the traditional (rotating field and DC commutator) electrical machines treated in the first part and the power electronics of part two. Field orientation of induction and synchronous machines are discussed in detail, as well as direct torque control. In addition, also switched reluctance machines and stepping motors are discussed in the last chapters. Finally, part 4 is devoted to the dynamics of traditional electrical machines. Also for the dynamics of induction and synchronous machine drives, the electromagnetics are used as the starting point to derive the dynamic models. Throughout part 4, much attention is paid to the derivation of analytical models. But, of course, the basic dynamic properties and probable causes of instability of induction and synchronous machine drives are discussed in detail as well, with the derived models for stability in the small as starting point. In addition to the study of the stability in the small, a chapter is devoted to large-scale dynamics as well (e.g. sudden short-circuit of synchronous machines). The textbook is used as the course text for the Bachelor’s and Master’s programme in electrical and mechanical engineering at the Faculty of Engineering and Architecture of Ghent University. Parts 1 and 2 are taught in the basic course ’Fundamentals of Electric Drives’ in the third bachelor. Part 3 is used for the course ’Controlled Electrical Drives’ in the first master, while Part 4 is used in the specialised master on electrical energy.

Book Artificial Intelligence based Electrical Machines and Drives

Download or read book Artificial Intelligence based Electrical Machines and Drives written by Peter Vas and published by Oxford University Press. This book was released on 1999-01-28 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt: Roughly half of all electricity generated is consumed in motors, and recent efforts to apply artificial intelligence (AI) to improving electric motors are receiving attention worldwide. At present two industrial drives incorporate some form of AI. This book is the first comprehensive discussion of AI applications to electrical machines and drives. It looks at d.c. drives, induction motor drives, synchronous motor drives, switched reluctance motor drives, and sensorless drives. It combines simple explanations of AI-based systems with detailed and unified mathematical and physical treatments, and it includes numerous worked examples, simulations, and experimental results.

Book Dynamics of Electric Drives

Download or read book Dynamics of Electric Drives written by Ishwar Singh and published by Pencil. This book was released on 2024-06-09 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electric drives lie at the heart of modern engineering, powering a vast array of applications ranging from industrial machinery and transportation systems to renewable energy technologies. As the world embraces electrification and automation, the demand for understanding the dynamics of electric drives has never been more pressing. It is within this context that "Dynamics of Electric Drives" emerges as a comprehensive guide aimed at elucidating the principles, dynamics, and applications of electric drive systems.

Book Introduction to Modern Analysis of Electric Machines and Drives

Download or read book Introduction to Modern Analysis of Electric Machines and Drives written by Paul C. Krause and published by John Wiley & Sons. This book was released on 2022-12-06 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Modern Analysis of Electric Machines and Drives Comprehensive resource introducing magnetic circuits and rotating electric machinery, including models and discussions of control techniques Introduction to Modern Analysis of Electric Machines and Drives is written for the junior or senior student in Electrical Engineering and covers the essential topic of machine analysis for those interested in power systems or drives engineering. The analysis contained in the text is based on Tesla’s rotating magnetic field and reference frame theory, which comes from Tesla’s work and is presented for the first time in an easy to understand format for the typical student. Since the stators of synchronous and induction machines are the same for analysis purposes, they are analyzed just once. Only the rotors are different and therefore analyzed separately. This approach makes it possible to cover the analysis efficiently and concisely without repeating derivations. In fact, the synchronous generator equations are obtained from the equivalent circuit, which is obtained from work in other chapters without any derivation of equations, which differentiates Introduction to Modern Analysis of Electric Machines and Drives from all other textbooks in this area. Topics explored by the two highly qualified authors in Introduction to Modern Analysis of Electric Machines and Drives include: Common analysis tools, covering steady-state phasor calculations, stationary magnetically linear systems, winding configurations, and two- and three-phase stators Analysis of the symmetrical stator, covering the change of variables in two- and three-phase transformations and more Symmetrical induction machines, covering symmetrical two-pole two-phase rotor windings, electromagnetic force and torque, and p-pole machines Direct current machines and drives, covering commutation, voltage and torque equations, permanent-magnet DC machines, and DC drives Introduction to Modern Analysis of Electric Machines and Drives is appropriate as either a first or second course in the power and drives area. Once the reader has covered the material in this book, they will have a sufficient background to start advanced study in the power systems or drives areas.

Book Analysis of Electric Machinery and Drive Systems

Download or read book Analysis of Electric Machinery and Drive Systems written by Paul C. Krause and published by John Wiley & Sons. This book was released on 2013-05-22 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing a new edition of the popular reference on machine analysis Now in a fully revised and expanded edition, this widely used reference on machine analysis boasts many changes designed to address the varied needs of engineers in the electric machinery, electric drives, and electric power industries. The authors draw on their own extensive research efforts, bringing all topics up to date and outlining a variety of new approaches they have developed over the past decade. Focusing on reference frame theory that has been at the core of this work since the first edition, this volume goes a step further, introducing new material relevant to machine design along with numerous techniques for making the derivation of equations more direct and easy to use. Coverage includes: Completely new chapters on winding functions and machine design that add a significant dimension not found in any other text A new formulation of machine equations for improving analysis and modeling of machines coupled to power electronic circuits Simplified techniques throughout, from the derivation of torque equations and synchronous machine analysis to the analysis of unbalanced operation A unique generalized approach to machine parameters identification A first-rate resource for engineers wishing to master cutting-edge techniques for machine analysis, Analysis of Electric Machinery and Drive Systems is also a highly useful guide for students in the field.

Book Electric Vehicle Machines and Drives

Download or read book Electric Vehicle Machines and Drives written by K. T. Chau and published by John Wiley & Sons. This book was released on 2015-05-26 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material