EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Approximation Methods for Solutions of Differential and Integral Equations

Download or read book Approximation Methods for Solutions of Differential and Integral Equations written by V. K. Dzyadyk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Approximation Methods for Solutions of Differential and Integral Equations".

Book Analysis of Approximation Methods for Differential and Integral Equations

Download or read book Analysis of Approximation Methods for Differential and Integral Equations written by Hans-Jürgen Reinhardt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.

Book Numerical Analysis of Partial Differential Equations

Download or read book Numerical Analysis of Partial Differential Equations written by Jacques Louis Lions and published by Springer Science & Business Media. This book was released on 2011-06-07 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: S. Albertoni: Alcuni metodi di calcolo nella teoria della diffusione dei neutroni.- I. Babuska: Optimization and numerical stability in computations.- J.H. Bramble: Error estimates in elliptic boundary value problems.- G. Capriz: The numerical approach to hydrodynamic problems.- A. Dou: Energy inequalities in an elastic cylinder.- T. Doupont: On the existence of an iterative method for the solution of elliptic difference equation with an improved work estimate.- J. Douglas, J.R. Cannon: The approximation of harmonic and parabolic functions of half-spaces from interior data.- B.E. Hubbard: Error estimates in the fixed Membrane problem.- K. Jorgens: Calculation of the spectrum of a Schrödinger operator.- A. Lasota: Contingent equations and boundary value problems.- J.L. Lions: Réduction à des problèmes du type Cauchy-Kowalewska.- J.L. Lions: Problèmes aux limites non homogènes à données irrégulières; une méthode d’approximation.- J.L. Lions: Remarques sur l’approximation régularisée de problèmes aux limites.- W.V. Petryshyn: On the approximation-solvability of nonlinear functional equations in normed linear spaces.- P.A. Raviart: Approximation des équations d’évolution par des méthodes variationnelles.- M. Sibony, H. Brezis: Méthodes d’approximation et d’itération pour les operateurs monotones.- V. Thomee: Some topics in stability theory for partial difference operators.

Book Equations Involving Malliavin Calculus Operators

Download or read book Equations Involving Malliavin Calculus Operators written by Tijana Levajković and published by Springer. This book was released on 2017-08-31 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed. The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters. In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introduced in terms of chaos expansions. The main properties of the operators, which are known in the literature for the square integrable processes, are proven using the chaos expansion approach and extended for generalized and test stochastic processes. Chapter 3, Equations involving Malliavin Calculus operators, is devoted to the study of several types of stochastic differential equations that involve the operators of Malliavin calculus, introduced in the previous chapter. Fractional versions of these operators are also discussed. Finally, in Chapter 4, Applications and Numerical Approximations are discussed. Specifically, we consider the stochastic linear quadratic optimal control problem with different forms of noise disturbances, operator differential algebraic equations arising in fluid dynamics, stationary equations and fractional versions of the equations studied – applications never covered in the extant literature. Moreover, numerical validations of the method are provided for specific problems."

Book A3N2M  Approximation  Applications  and Analysis of Nonlocal  Nonlinear Models

Download or read book A3N2M Approximation Applications and Analysis of Nonlocal Nonlinear Models written by Tadele Mengesha and published by Springer Nature. This book was released on 2023-09-12 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects papers based on plenary and invited talks given at the 50th Barrett Memorial Lectures on Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models that was organized by the University of Tennessee, Knoxville and held virtually in May 2021. The three-day meeting brought together experts from the computational, scientific, engineering, and mathematical communities who work with nonlocal models. These proceedings collect contributions and give a survey of the state of the art in computational practices, mathematical analysis, applications of nonlocal models, and explorations of new application domains. The volume benefits from the mixture of contributions by computational scientists, mathematicians, and application specialists. The content is suitable for graduate students as well as specialists working with nonlocal models and covers topics on fractional PDEs, regularity theory for kinetic equations, approximation theory for fractional diffusion, analysis of nonlocal diffusion model as a bridge between local and fractional PDEs, and more.

Book Functional Analysis and Approximation Theory in Numerical Analysis

Download or read book Functional Analysis and Approximation Theory in Numerical Analysis written by R. S. Varga and published by SIAM. This book was released on 1971-01-01 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the enormous literature on numerical approximation of solutions of elliptic boundary problems by means of variational and finite element methods, requiring almost constant application of results and techniques from functional analysis and approximation theory to the field of numerical analysis.

Book Fourier Analysis of Numerical Approximations of Hyperbolic Equations

Download or read book Fourier Analysis of Numerical Approximations of Hyperbolic Equations written by R. Vichnevetsky and published by SIAM. This book was released on 1982-01-01 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been a growing interest in the use of Fourier analysis to examine questions of accuracy and stability of numerical methods for solving partial differential equations. This kind of analysis can produce particularly attractive and useful results for hyperbolic equations. This book provides useful reference material for those concerned with computational fluid dynamics: for physicists and engineers who work with computers in the analysis of problems in such diverse fields as hydraulics, gas dynamics, plasma physics, numerical weather prediction, and transport processes in engineering, and who need to understand the implications of the approximations they use; and for applied mathematicians concerned with the more theoretical aspects of these computations.

Book Semi Lagrangian Approximation Schemes for Linear and Hamilton Jacobi Equations

Download or read book Semi Lagrangian Approximation Schemes for Linear and Hamilton Jacobi Equations written by Maurizio Falcone and published by SIAM. This book was released on 2014-01-31 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This largely self-contained book provides a unified framework of semi-Lagrangian strategy for the approximation of hyperbolic PDEs, with a special focus on Hamilton-Jacobi equations. The authors provide a rigorous discussion of the theory of viscosity solutions and the concepts underlying the construction and analysis of difference schemes; they then proceed to high-order semi-Lagrangian schemes and their applications to problems in fluid dynamics, front propagation, optimal control, and image processing. The developments covered in the text and the references come from a wide range of literature.

Book Nonlinear Ordinary Differential Equations

Download or read book Nonlinear Ordinary Differential Equations written by Martin Hermann and published by Springer. This book was released on 2016-05-09 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march method. This book comprehensively investigates various new analytical and numerical approximation techniques that are used in solving nonlinear-oscillator and structural-system problems. Students often rely on the finite element method to such an extent that on graduation they have little or no knowledge of alternative methods of solving problems. To rectify this, the book introduces several new approximation techniques.

Book Numerical Analysis

    Book Details:
  • Author : Walter Gautschi
  • Publisher : Springer Science & Business Media
  • Release : 2011-12-06
  • ISBN : 0817682597
  • Pages : 611 pages

Download or read book Numerical Analysis written by Walter Gautschi and published by Springer Science & Business Media. This book was released on 2011-12-06 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second edition includes the expansion of an already large collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors.

Book Delay Equations  Approximation and Application

Download or read book Delay Equations Approximation and Application written by MEINARDUS and published by Birkhäuser. This book was released on 2013-03-08 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: The international symposium held in October 1984 at the Uni versity of Mannheim was the first with the special aim to expose the connection of the Theory of Delay Eauations and Approximation Theory with the emphasis on constructive methods and applications. Although the separate character of both domains is reflected by their historical development, the latest research shows that the numerical treatment of Delay Equations leads to various appro ximation and optimization problems. An introductory survey of this circle of problems written by the editors is included at the beginning of the book. Delay Equations have their origin in domains of applications, such as physics, engineering, biology, medicine and economics. They appear in connection with the fundamental problem to analyse a retarded process from the real world, to develop a corresponding mathematical model and to determine the future behavior. Thirty mathematicians attended the conference coming from Germany, West- and Eastern Europe and the United States- more than twenty of them presented a research talk. The lectures about Delay Equations were mainly oriented on the following subjects: single-step, multi-step and spline methods; monotonicity methods for error estimations; asymptotic behavior 10 and periodicity of solutions. The topics of the talks on Approxi mation Theory covered different aspects of approximation by poly nomials, splines and rational functions and their numerical rea lization. Additionally included in the scientific program was a special session on Open Problems, where several suggestions were made for further research concerning both fields.

Book Analyse num  rique  Approximations et   quations diff  rentielles

Download or read book Analyse num rique Approximations et quations diff rentielles written by Moïse Sibony and published by . This book was released on 1982 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Numerical Analysis

Download or read book Introduction to Numerical Analysis written by Francis Begnaud Hildebrand and published by Courier Corporation. This book was released on 1987-01-01 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ultimate aim of the field of numerical analysis is to provide convenient methods for obtaining useful solutions to mathematical problems and for extracting useful information from available solutions which are not expressed in tractable forms. This well-known, highly respected volume provides an introduction to the fundamental processes of numerical analysis, including substantial grounding in the basic operations of computation, approximation, interpolation, numerical differentiation and integration, and the numerical solution of equations, as well as in applications to such processes as the smoothing of data, the numerical summation of series, and the numerical solution of ordinary differential equations. Chapter headings include: l. Introduction 2. Interpolation with Divided Differences 3. Lagrangian Methods 4. Finite-Difference Interpolation 5. Operations with Finite Differences 6. Numerical Solution of Differential Equations 7. Least-Squares Polynomial Approximation In this revised and updated second edition, Professor Hildebrand (Emeritus, Mathematics, MIT) made a special effort to include more recent significant developments in the field, increasing the focus on concepts and procedures associated with computers. This new material includes discussions of machine errors and recursive calculation, increased emphasis on the midpoint rule and the consideration of Romberg integration and the classical Filon integration; a modified treatment of prediction-correction methods and the addition of Hamming's method, and numerous other important topics. In addition, reference lists have been expanded and updated, and more than 150 new problems have been added. Widely considered the classic book in the field, Hildebrand's Introduction to Numerical Analysis is aimed at advanced undergraduate and graduate students, or the general reader in search of a strong, clear introduction to the theory and analysis of numbers.

Book Strong and Weak Approximation of Semilinear Stochastic Evolution Equations

Download or read book Strong and Weak Approximation of Semilinear Stochastic Evolution Equations written by Raphael Kruse and published by Springer. This book was released on 2013-11-18 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq.

Book Analyse num  rique

    Book Details:
  • Author : Moïse Sibony
  • Publisher :
  • Release : 1997
  • ISBN : 9782705672935
  • Pages : 0 pages

Download or read book Analyse num rique written by Moïse Sibony and published by . This book was released on 1997 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Approximation of Partial Differential Equations

Download or read book Numerical Approximation of Partial Differential Equations written by Alfio Quarteroni and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everything is more simple than one thinks but at the same time more complex than one can understand Johann Wolfgang von Goethe To reach the point that is unknown to you, you must take the road that is unknown to you St. John of the Cross This is a book on the numerical approximation ofpartial differential equations (PDEs). Its scope is to provide a thorough illustration of numerical methods (especially those stemming from the variational formulation of PDEs), carry out their stability and convergence analysis, derive error bounds, and discuss the algorithmic aspects relative to their implementation. A sound balancing of theoretical analysis, description of algorithms and discussion of applications is our primary concern. Many kinds of problems are addressed: linear and nonlinear, steady and time-dependent, having either smooth or non-smooth solutions. Besides model equations, we consider a number of (initial-) boundary value problems of interest in several fields of applications. Part I is devoted to the description and analysis of general numerical methods for the discretization of partial differential equations. A comprehensive theory of Galerkin methods and its variants (Petrov Galerkin and generalized Galerkin), as wellas ofcollocationmethods, is devel oped for the spatial discretization. This theory is then specified to two numer ical subspace realizations of remarkable interest: the finite element method (conforming, non-conforming, mixed, hybrid) and the spectral method (Leg endre and Chebyshev expansion).

Book Numerical Solution of Ordinary Differential Equations

Download or read book Numerical Solution of Ordinary Differential Equations written by and published by Academic Press. This book was released on 1971-03-31 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank matrix approximations; hybrid methods based on a combination of iterative procedures and best operator approximation; andmethods for information compression and filtering under condition that a filter model should satisfy restrictions associated with causality and different types of memory.As a result, the book represents a blend of new methods in general computational analysis,and specific, but also generic, techniques for study of systems theory ant its particularbranches, such as optimal filtering and information compression. - Best operator approximation,- Non-Lagrange interpolation,- Generic Karhunen-Loeve transform- Generalised low-rank matrix approximation- Optimal data compression- Optimal nonlinear filtering