Download or read book A Concise Introduction to Mathematical Logic written by Wolfgang Rautenberg and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: While there are already several well known textbooks on mathematical logic this book is unique in treating the material in a concise and streamlined fashion. This allows many important topics to be covered in a one semester course. Although the book is intended for use as a graduate text the first three chapters can be understood by undergraduates interested in mathematical logic. The remaining chapters contain material on logic programming for computer scientists, model theory, recursion theory, Godel’s Incompleteness Theorems, and applications of mathematical logic. Philosophical and foundational problems of mathematics are discussed throughout the text.
Download or read book Mathematical Logic written by Joseph R. Shoenfield and published by CRC Press. This book was released on 2018-05-02 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to the main areas of mathematical logic provides the basis for a first graduate course in the subject. It embodies the viewpoint that mathematical logic is not a collection of vaguely related results, but a coherent method of attacking some of the most interesting problems, which face the mathematician. The author presents the basic concepts in an unusually clear and accessible fashion, concentrating on what he views as the central topics of mathematical logic: proof theory, model theory, recursion theory, axiomatic number theory, and set theory. There are many exercises, and they provide the outline of what amounts to a second book that goes into all topics in more depth. This book has played a role in the education of many mature and accomplished researchers.
Download or read book Introduction to Mathematical Logic written by Elliot Mendelsohn and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Download or read book Mathematical Logic in the 20th Century written by Gerald E. Sacks and published by World Scientific. This book was released on 2003 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: This invaluable book is a collection of 31 important both inideas and results papers published by mathematical logicians inthe 20th Century. The papers have been selected by Professor Gerald ESacks. Some of the authors are Gdel, Kleene, Tarski, A Robinson, Kreisel, Cohen, Morley, Shelah, Hrushovski and Woodin.
Download or read book A Friendly Introduction to Mathematical Logic written by Christopher C. Leary and published by Lulu.com. This book was released on 2015 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the intersection of mathematics, computer science, and philosophy, mathematical logic examines the power and limitations of formal mathematical thinking. In this expansion of Leary's user-friendly 1st edition, readers with no previous study in the field are introduced to the basics of model theory, proof theory, and computability theory. The text is designed to be used either in an upper division undergraduate classroom, or for self study. Updating the 1st Edition's treatment of languages, structures, and deductions, leading to rigorous proofs of Gödel's First and Second Incompleteness Theorems, the expanded 2nd Edition includes a new introduction to incompleteness through computability as well as solutions to selected exercises.
Download or read book An Outline of Mathematical Logic written by A. Grzegorczyk and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen the appearance of many English-Ianguage hand books of logie and numerous monographs on topieal discoveries in the foundations of mathematies. These publications on the foundations of mathematies as a whole are rather difficult for the beginners or refer the reader to other handbooks and various pieeemeal eontribu tions and also sometimes to largely conceived "mathematical fol klore" of unpublished results. As distinct from these, the present book is as easy as possible systematic exposition of the now classical results in the foundations of mathematics. Henee the book may be useful especially for those readers who want to have all the proofs carried out in full and all the concepts explained in detail. In this sense the book is self-contained. The reader's ability to guess is not assumed, and the author's ambition was to reduce the use of sueh words as evident and obvious in proofs to aminimum. This is why the book, it is believed, may be helpful in teaehing or learning the foundation of mathematics in those situations in which the student cannot refer to a parallel lecture on the subject. This is also the reason that I do not insert in the book the last results and the most modem and fashionable approaches to the subjeet, which does not enrich the essential knowledge in founda tions but ean discourage the beginner by their abstract form. A. G.
Download or read book Logic and Discrete Mathematics written by Willem Conradie and published by John Wiley & Sons. This book was released on 2015-05-08 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.
Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Course in Mathematical Logic for Mathematicians written by Yu. I. Manin and published by Springer Science & Business Media. This book was released on 2009-10-13 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Download or read book Outlines of a Formalist Philosophy of Mathematics written by Haskell Brooks Curry and published by Elsevier. This book was released on 1951 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Classical Mathematical Logic written by Richard L. Epstein and published by Princeton University Press. This book was released on 2011-12-18 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Classical Mathematical Logic, Richard L. Epstein relates the systems of mathematical logic to their original motivations to formalize reasoning in mathematics. The book also shows how mathematical logic can be used to formalize particular systems of mathematics. It sets out the formalization not only of arithmetic, but also of group theory, field theory, and linear orderings. These lead to the formalization of the real numbers and Euclidean plane geometry. The scope and limitations of modern logic are made clear in these formalizations. The book provides detailed explanations of all proofs and the insights behind the proofs, as well as detailed and nontrivial examples and problems. The book has more than 550 exercises. It can be used in advanced undergraduate or graduate courses and for self-study and reference. Classical Mathematical Logic presents a unified treatment of material that until now has been available only by consulting many different books and research articles, written with various notation systems and axiomatizations.
Download or read book The Evolution of Logic written by W. D. Hart and published by Cambridge University Press. This book was released on 2010-08-23 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the relations between logic and philosophy over the last 150 years. Logic underwent a major renaissance beginning in the nineteenth century. Cantor almost tamed the infinite, and Frege aimed to undercut Kant by reducing mathematics to logic. These achievements were threatened by the paradoxes, like Russell's. This ferment generated excellent philosophy (and mathematics) by excellent philosophers (and mathematicians) up to World War II. This book provides a selective, critical history of the collaboration between logic and philosophy during this period. After World War II, mathematical logic became a recognized subdiscipline in mathematics departments, and consequently but unfortunately philosophers have lost touch with its monuments. This book aims to make four of them (consistency and independence of the continuum hypothesis, Post's problem, and Morley's theorem) more accessible to philosophers, making available the tools necessary for modern scholars of philosophy to renew a productive dialogue between logic and philosophy.
Download or read book Schaum s Outline of Logic Second Edition written by John Nolt and published by McGraw-Hill Education. This book was released on 2011-02-17 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideal review for your logic course More than 40 million students have trusted Schaum’s Outlines for their expert knowledge and helpful solved problems. Written by renowned experts in their respective fields, Schaum’s Outlines cover everything from math to science, nursing to language. The main feature for all these books is the solved problems. Step-by-step, authors walk readers through coming up with solutions to exercises in their topic of choice. 500 solved problems Includes non-classical logics Covers the probability calculus Complements or supplements the major Logic textbooks Appropriate for the following courses: Introduction to Formal Logic, Informal Logic, Logic Programming, Algebra Complete course content in easy-to-follow outline form Hundreds of solved problems for effective test preparation
Download or read book Logic for Mathematicians written by J. Barkley Rosser and published by Courier Dover Publications. This book was released on 2008-12-18 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examination of essential topics and theorems assumes no background in logic. "Undoubtedly a major addition to the literature of mathematical logic." — Bulletin of the American Mathematical Society. 1978 edition.
Download or read book An Outline of Set Theory written by James M. Henle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed for use in a one semester problem-oriented course in undergraduate set theory. The combination of level and format is somewhat unusual and deserves an explanation. Normally, problem courses are offered to graduate students or selected undergraduates. I have found, however, that the experience is equally valuable to ordinary mathematics majors. I use a recent modification of R. L. Moore's famous method developed in recent years by D. W. Cohen [1]. Briefly, in this new approach, projects are assigned to groups of students each week. With all the necessary assistance from the instructor, the groups complete their projects, carefully write a short paper for their classmates, and then, in the single weekly class meeting, lecture on their results. While the em phasis is on the student, the instructor is available at every stage to assure success in the research, to explain and critique mathematical prose, and to coach the groups in clear mathematical presentation. The subject matter of set theory is peculiarly appropriate to this style of course. For much of the book the objects of study are familiar and while the theorems are significant and often deep, it is the methods and ideas that are most important. The necessity of rea soning about numbers and sets forces students to come to grips with the nature of proof, logic, and mathematics. In their research they experience the same dilemmas and uncertainties that faced the pio neers.
Download or read book An Algebraic Introduction to Mathematical Logic written by D.W. Barnes and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a substantial course on abstract algebra. Consequently, our treatment of the subject is algebraic. Although we assume a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of the exercises. We also assume a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model of logic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based--rather, any conclusions to be drawn about the foundations of mathematics come only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.
Download or read book Set Theory and Logic written by Robert R. Stoll and published by Courier Corporation. This book was released on 2012-05-23 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.