Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Time Series Prediction written by Andreas S. Weigend and published by Routledge. This book was released on 2018-05-04 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a summary of a time series forecasting competition that was held a number of years ago. It aims to provide a snapshot of the range of new techniques that are used to study time series, both as a reference for experts and as a guide for novices.
Download or read book Dimension Estimation and Models written by Howell Tong and published by World Scientific. This book was released on 1993 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the first in the new series Nonlinear Time Series and Chaos. The general aim of the series is to provide a bridge between the two communities by inviting prominent researchers in their respective fields to give a systematic account of their chosen topics, starting at the beginning and ending with the latest state. It is hoped that researchers in both communities will find the topics relevant and thought provoking. In this volume, the first chapter, written by Professor Colleen Cutler, is a comprehensive account of the theory and estimation of fractal dimension, a topic of central importance in dynamical systems, which has recently attracted the attention of the statisticians. As it is natural to study a stochastic dynamical system within the framework of Markov chains, it is therefore relevant to study their limiting behaviour. The second chapter, written by Professor Kung-Sik Chan, reviews some limit theorems of Markov chains and illustrates their relevance to chaos. The next three chapters are concerned with specific models. Briefly, Chapter Three by Professor Peter Lewis and Dr Bonnie Ray and Chapter Four by Professor Peter Brockwell generalise the class of self-exciting threshold autoregressive models in different directions. In Chapter Three, the new and powerful methodology of multivariate adaptive regression splines (MARS) is adapted to time series data. Its versatility is illustrated by reference to the very interesting and complex sea surface temperature data. Chapter Four exploits the greater tractability of continuous-time Markov approach to discrete-time data. The approach is particularly relevant to irregularly sampled data. The concluding chapter, by Professor Pham Dinh Tuan, is likely to be the most definitive account of bilinear models in discrete time to date.
Download or read book Journal of the American Statistical Association written by American Statistical Association and published by . This book was released on 1997 with total page 896 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Government Reports Announcements Index written by and published by . This book was released on 1992 with total page 1246 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Government Reports Annual Index written by and published by . This book was released on 1992 with total page 1114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sections 1-2. Keyword Index.--Section 3. Personal author index.--Section 4. Corporate author index.-- Section 5. Contract/grant number index, NTIS order/report number index 1-E.--Section 6. NTIS order/report number index F-Z.
Download or read book Mathematical Reviews written by and published by . This book was released on 1995 with total page 748 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book An Introduction to Applied Multivariate Analysis with R written by Brian Everitt and published by Springer Science & Business Media. This book was released on 2011-04-23 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of data sets collected by researchers in all disciplines are multivariate, meaning that several measurements, observations, or recordings are taken on each of the units in the data set. These units might be human subjects, archaeological artifacts, countries, or a vast variety of other things. In a few cases, it may be sensible to isolate each variable and study it separately, but in most instances all the variables need to be examined simultaneously in order to fully grasp the structure and key features of the data. For this purpose, one or another method of multivariate analysis might be helpful, and it is with such methods that this book is largely concerned. Multivariate analysis includes methods both for describing and exploring such data and for making formal inferences about them. The aim of all the techniques is, in general sense, to display or extract the signal in the data in the presence of noise and to find out what the data show us in the midst of their apparent chaos. An Introduction to Applied Multivariate Analysis with R explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software. Throughout the book, the authors give many examples of R code used to apply the multivariate techniques to multivariate data.
Download or read book Index Medicus written by and published by . This book was released on 2001-07 with total page 1596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Download or read book Time Series Analysis Methods and Applications written by Tata Subba Rao and published by Elsevier. This book was released on 2012-06-26 with total page 778 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Handbook of Statistics' is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with volume 30 dealing with time series.
Download or read book Comprehensive Dissertation Index written by and published by . This book was released on 1989 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Current Index to Statistics Applications Methods and Theory written by and published by . This book was released on 1999 with total page 948 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Current Index to Statistics (CIS) is a bibliographic index of publications in statistics, probability, and related fields.
Download or read book Power Distribution Planning Reference Book Second Edition written by H. Lee Willis and published by CRC Press. This book was released on 2004-03-01 with total page 1246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing more than twice the content of the original edition, this new edition is the premier source on the selection, development, and provision of safe, high-quality, and cost-effective electric utility distribution systems, and it promises vast improvements in system reliability and layout by spanning every aspect of system planning including load forecasting, scheduling, performance, and economics. Responding to the evolving needs of electric utilities, Power Distribution Planning Reference Book presents an abundance of real-world examples, procedural and managerial issues, and engineering and analytical methodologies that are crucial to efficient and enhanced system performance.
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Download or read book Proceedings of the American Control Conference written by and published by . This book was released on 1992 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonparametric Regression Methods for Longitudinal Data Analysis written by Hulin Wu and published by John Wiley & Sons. This book was released on 2006-05-12 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incorporates mixed-effects modeling techniques for more powerful and efficient methods This book presents current and effective nonparametric regression techniques for longitudinal data analysis and systematically investigates the incorporation of mixed-effects modeling techniques into various nonparametric regression models. The authors emphasize modeling ideas and inference methodologies, although some theoretical results for the justification of the proposed methods are presented. With its logical structure and organization, beginning with basic principles, the text develops the foundation needed to master advanced principles and applications. Following a brief overview, data examples from biomedical research studies are presented and point to the need for nonparametric regression analysis approaches. Next, the authors review mixed-effects models and nonparametric regression models, which are the two key building blocks of the proposed modeling techniques. The core section of the book consists of four chapters dedicated to the major nonparametric regression methods: local polynomial, regression spline, smoothing spline, and penalized spline. The next two chapters extend these modeling techniques to semiparametric and time varying coefficient models for longitudinal data analysis. The final chapter examines discrete longitudinal data modeling and analysis. Each chapter concludes with a summary that highlights key points and also provides bibliographic notes that point to additional sources for further study. Examples of data analysis from biomedical research are used to illustrate the methodologies contained throughout the book. Technical proofs are presented in separate appendices. With its focus on solving problems, this is an excellent textbook for upper-level undergraduate and graduate courses in longitudinal data analysis. It is also recommended as a reference for biostatisticians and other theoretical and applied research statisticians with an interest in longitudinal data analysis. Not only do readers gain an understanding of the principles of various nonparametric regression methods, but they also gain a practical understanding of how to use the methods to tackle real-world problems.
Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.