Download or read book Complex Analysis an Introduction to Theory of Analytic Functions of One Complex Variable written by Ahlfors Lars V and published by . This book was released on 1981 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Complex Analysis in Several Variables written by Volker Scheidemann and published by Springer Nature. This book was released on 2023 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to complex analysis in several variables. While it focusses on a number of topics in complex analysis rather than trying to cover as much material as possible, references to other parts of mathematics such as functional analysis or algebras are made to help broaden the view and the understanding of the chosen topics. A major focus are extension phenomena alien to the one-dimensional theory, which are expressed in the famous Hartog's Kugelsatz, the theorem of Cartan-Thullen, and Bochner's theorem. The book aims primarily at students starting to work in the field of complex analysis in several variables and instructors preparing a course. To that end, a lot of examples and supporting exercises are provided throughout the text. This second edition includes hints and suggestions for the solution of the provided exercises, with various degrees of support.
Download or read book Complex Variables written by Carlos A. Berenstein and published by Springer Science & Business Media. This book was released on 1991-05-23 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text gives an overview of the basic properties of holomorphic functions of one complex variable. Topics studied in this overview include a detailed description of differential forms, homotopy theory, and homology theory, as the analytic properties of holomorphic functions, the solvability of the inhomogeneous Cauchy-Riemann equation with emphasis on the notation of compact families, the theory of growth of subharmonic functions, and an introduction to the theory of sheaves, covering spaces and Riemann surfaces. To further illuminate the material, a large number of exercises of differing levels of difficulty have been added.
Download or read book An Introduction to the Theory of Functions of a Complex Variable written by Edward Thomas Copson and published by . This book was released on 1946 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Complex Analysis written by H. A. Priestley and published by OUP Oxford. This book was released on 2003-08-28 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter. This is the latest addition to the growing list of Oxford undergraduate textbooks in mathematics, which includes: Biggs: Discrete Mathematics 2nd Edition, Cameron: Introduction to Algebra, Needham: Visual Complex Analysis, Kaye and Wilson: Linear Algebra, Acheson: Elementary Fluid Dynamics, Jordan and Smith: Nonlinear Ordinary Differential Equations, Smith: Numerical Solution of Partial Differential Equations, Wilson: Graphs, Colourings and the Four-Colour Theorem, Bishop: Neural Networks for Pattern Recognition, Gelman and Nolan: Teaching Statistics.
Download or read book Complex Analysis written by Jerry R. Muir, Jr. and published by John Wiley & Sons. This book was released on 2015-05-26 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough introduction to the theory of complex functions emphasizing the beauty, power, and counterintuitive nature of the subject Written with a reader-friendly approach, Complex Analysis: A Modern First Course in Function Theory features a self-contained, concise development of the fundamental principles of complex analysis. After laying groundwork on complex numbers and the calculus and geometric mapping properties of functions of a complex variable, the author uses power series as a unifying theme to define and study the many rich and occasionally surprising properties of analytic functions, including the Cauchy theory and residue theorem. The book concludes with a treatment of harmonic functions and an epilogue on the Riemann mapping theorem. Thoroughly classroom tested at multiple universities, Complex Analysis: A Modern First Course in Function Theory features: Plentiful exercises, both computational and theoretical, of varying levels of difficulty, including several that could be used for student projects Numerous figures to illustrate geometric concepts and constructions used in proofs Remarks at the conclusion of each section that place the main concepts in context, compare and contrast results with the calculus of real functions, and provide historical notes Appendices on the basics of sets and functions and a handful of useful results from advanced calculus Appropriate for students majoring in pure or applied mathematics as well as physics or engineering, Complex Analysis: A Modern First Course in Function Theory is an ideal textbook for a one-semester course in complex analysis for those with a strong foundation in multivariable calculus. The logically complete book also serves as a key reference for mathematicians, physicists, and engineers and is an excellent source for anyone interested in independently learning or reviewing the beautiful subject of complex analysis.
Download or read book Introductory Complex Analysis written by Richard A. Silverman and published by Courier Corporation. This book was released on 2013-04-15 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.
Download or read book Function Theory of One Complex Variable written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 2006 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex analysis is one of the most central subjects in mathematics. It is compelling and rich in its own right, but it is also remarkably useful in a wide variety of other mathematical subjects, both pure and applied. This book is different from others in that it treats complex variables as a direct development from multivariable real calculus. As each new idea is introduced, it is related to the corresponding idea from real analysis and calculus. The text is rich with examples andexercises that illustrate this point. The authors have systematically separated the analysis from the topology, as can be seen in their proof of the Cauchy theorem. The book concludes with several chapters on special topics, including full treatments of special functions, the prime number theorem,and the Bergman kernel. The authors also treat $Hp$ spaces and Painleve's theorem on smoothness to the boundary for conformal maps. This book is a text for a first-year graduate course in complex analysis. It is an engaging and modern introduction to the subject, reflecting the authors' expertise both as mathematicians and as expositors.
Download or read book Methods of the Theory of Functions of Many Complex Variables written by Vasiliy Sergeyevich Vladimirov and published by Courier Corporation. This book was released on 2007-01-01 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This systematic exposition outlines the fundamentals of the theory of single sheeted domains of holomorphy. It further illustrates applications to quantum field theory, the theory of functions, and differential equations with constant coefficients. Students of quantum field theory will find this text of particular value. The text begins with an introduction that defines the basic concepts and elementary propositions, along with the more salient facts from the theory of functions of real variables and the theory of generalized functions. Subsequent chapters address the theory of plurisubharmonic functions and pseudoconvex domains, along with characteristics of domains of holomorphy. These explorations are further examined in terms of four types of domains: multiple-circular, tubular, semitubular, and Hartogs' domains. Surveys of integral representations focus on the Martinelli-Bochner, Bergman-Weil, and Bochner representations. The final chapter is devoted to applications, particularly those involved in field theory. It employs the theory of generalized functions, along with the theory of functions of several complex variables.
Download or read book An Introduction to Complex Function Theory written by Bruce P. Palka and published by Springer Science & Business Media. This book was released on 1991 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Download or read book Function Theory of Several Complex Variables written by Steven George Krantz and published by American Mathematical Soc.. This book was released on 2001 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing integral formulas, the geometric theory of pseudoconvexity, estimates, partial differential equations, approximation theory, inner functions, invariant metrics, and mapping theory, this title is intended for the student with a background in real and complex variable theory, harmonic analysis, and differential equations.
Download or read book Elementary Theory of Analytic Functions of One or Several Complex Variables written by Henri Cartan and published by Courier Corporation. This book was released on 2013-04-22 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Download or read book Complex Function Theory written by Donald Sarason and published by American Mathematical Society. This book was released on 2021-02-16 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex Function Theory is a concise and rigorous introduction to the theory of functions of a complex variable. Written in a classical style, it is in the spirit of the books by Ahlfors and by Saks and Zygmund. Being designed for a one-semester course, it is much shorter than many of the standard texts. Sarason covers the basic material through Cauchy's theorem and applications, plus the Riemann mapping theorem. It is suitable for either an introductory graduate course or an undergraduate course for students with adequate preparation. The first edition was published with the title Notes on Complex Function Theory.
Download or read book An introduction to the theory of complex variables written by and published by Bookboon. This book was released on with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Tasty Bits of Several Complex Variables written by Jiri Lebl and published by Lulu.com. This book was released on 2016-05-05 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a polished version of my course notes for Math 6283, Several Complex Variables, given in Spring 2014 and Spring 2016 semester at Oklahoma State University. The course covers basics of holomorphic function theory, CR geometry, the dbar problem, integral kernels and basic theory of complex analytic subvarieties. See http: //www.jirka.org/scv/ for more information.
Download or read book Analytic Functions of Several Complex Variables written by Robert Clifford Gunning and published by American Mathematical Soc.. This book was released on 2009 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.
Download or read book Complex Variables written by Mark J. Ablowitz and published by Cambridge University Press. This book was released on 1997-02-13 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: In addition to being mathematically elegant, complex variables provide a powerful tool for solving problems that are either very difficult or virtually impossible to solve in any other way. Part I of this text provides an introduction to the subject, including analytic functions, integration, series, and residue calculus and also includes transform methods, ODEs in the complex plane, numerical methods and more. Part II contains conformal mappings, asymptotic expansions, and the study of Riemann-Hilbert problems. The authors also provide an extensive array of applications, illustrative examples and homework exercises. This book is ideal for use in introductory undergraduate and graduate level courses in complex variables.