EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to the Harmonic Series and Logarithmic Integrals

Download or read book An Introduction to the Harmonic Series and Logarithmic Integrals written by Ali Olaikhan and published by . This book was released on 2021-04-15 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad panel of results about the harmonic series and logarithmic integrals, some of which are, as far as I know, new in the mathematical literature. One goal of the book is to introduce the harmonic series in a way that will be approachable by anyone with a good knowledge of calculus-from high school students to researchers. The other goal is to present this book as a good reference resource for such series, as they are not commonly found in the standard textbooks and only very few books address them, apart from articles that are highly specialized and addressed in general to a small audience. The book will equip the reader with plenty of important tools that are necessary to solve (challenging) problems involving the harmonic series, and will also help the reader explore advanced results.

Book More  Almost  Impossible Integrals  Sums  and Series

Download or read book More Almost Impossible Integrals Sums and Series written by Cornel Ioan Vălean and published by Springer Nature. This book was released on 2023-05-24 with total page 847 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the much-anticipated sequel to (Almost) Impossible, Integrals, Sums, and Series, presents a whole new collection of challenging problems and solutions that are not commonly found in classical textbooks. As in the author’s previous book, these fascinating mathematical problems are shown in new and engaging ways, and illustrate the connections between integrals, sums, and series, many of which involve zeta functions, harmonic series, polylogarithms, and various other special functions and constants. Throughout the book, the reader will find both classical and new problems, with numerous original problems and solutions coming from the personal research of the author. Classical problems are shown in a fresh light, with new, surprising or unconventional ways of obtaining the desired results devised by the author. This book is accessible to readers with a good knowledge of calculus, from undergraduate students to researchers. It will appeal to all mathematical puzzlers who love a good integral or series and aren’t afraid of a challenge.

Book  Almost  Impossible Integrals  Sums  and Series

Download or read book Almost Impossible Integrals Sums and Series written by Cornel Ioan Vălean and published by Springer. This book was released on 2019-05-10 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a multitude of challenging problems and solutions that are not commonly found in classical textbooks. One goal of the book is to present these fascinating mathematical problems in a new and engaging way and illustrate the connections between integrals, sums, and series, many of which involve zeta functions, harmonic series, polylogarithms, and various other special functions and constants. Throughout the book, the reader will find both classical and new problems, with numerous original problems and solutions coming from the personal research of the author. Where classical problems are concerned, such as those given in Olympiads or proposed by famous mathematicians like Ramanujan, the author has come up with new, surprising or unconventional ways of obtaining the desired results. The book begins with a lively foreword by renowned author Paul Nahin and is accessible to those with a good knowledge of calculus from undergraduate students to researchers, and will appeal to all mathematical puzzlers who love a good integral or series.

Book Special Techniques For Solving Integrals  Examples And Problems

Download or read book Special Techniques For Solving Integrals Examples And Problems written by Khristo N Boyadzhiev and published by World Scientific. This book was released on 2021-12-10 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains techniques of integration which are not found in standard calculus and advanced calculus books. It can be considered as a map to explore many classical approaches to evaluate integrals. It is intended for students and professionals who need to solve integrals or like to solve integrals and yearn to learn more about the various methods they could apply. Undergraduate and graduate students whose studies include mathematical analysis or mathematical physics will strongly benefit from this material. Mathematicians involved in research and teaching in areas related to calculus, advanced calculus and real analysis will find it invaluable.The volume contains numerous solved examples and problems for the reader. These examples can be used in classwork or for home assignments, as well as a supplement to student projects and student research.

Book Calculus Volume 3

    Book Details:
  • Author : Edwin Herman
  • Publisher :
  • Release : 2016-03-30
  • ISBN : 9781947172838
  • Pages : 0 pages

Download or read book Calculus Volume 3 written by Edwin Herman and published by . This book was released on 2016-03-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Calculus is designed for the typical two- or three-semester general calculus course, incorporating innovative features to enhance student learning. The book guides students through the core concepts of calculus and helps them understand how those concepts apply to their lives and the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Volume 3 covers parametric equations and polar coordinates, vectors, functions of several variables, multiple integration, and second-order differential equations.

Book Complex Analysis

    Book Details:
  • Author : Theodore W. Gamelin
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-01
  • ISBN : 0387216073
  • Pages : 508 pages

Download or read book Complex Analysis written by Theodore W. Gamelin and published by Springer Science & Business Media. This book was released on 2013-11-01 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.

Book Harmonic Function Theory

    Book Details:
  • Author : Sheldon Axler
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1475781377
  • Pages : 266 pages

Download or read book Harmonic Function Theory written by Sheldon Axler and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.

Book Multiple Zeta Functions  Multiple Polylogarithms And Their Special Values

Download or read book Multiple Zeta Functions Multiple Polylogarithms And Their Special Values written by Jianqiang Zhao and published by World Scientific. This book was released on 2016-03-07 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first introductory book on multiple zeta functions and multiple polylogarithms which are the generalizations of the Riemann zeta function and the classical polylogarithms, respectively, to the multiple variable setting. It contains all the basic concepts and the important properties of these functions and their special values. This book is aimed at graduate students, mathematicians and physicists who are interested in this current active area of research.The book will provide a detailed and comprehensive introduction to these objects, their fascinating properties and interesting relations to other mathematical subjects, and various generalizations such as their q-analogs and their finite versions (by taking partial sums modulo suitable prime powers). Historical notes and exercises are provided at the end of each chapter.

Book Introduction to Harmonic Analysis and Generalized Gelfand Pairs

Download or read book Introduction to Harmonic Analysis and Generalized Gelfand Pairs written by Gerrit van Dijk and published by Walter de Gruyter. This book was released on 2009-12-23 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an introduction to harmonic analysis and generalized Gelfand pairs. Starting with the elementary theory of Fourier series and Fourier integrals, the author proceeds to abstract harmonic analysis on locally compact abelian groups and Gelfand pairs. Finally a more advanced theory of generalized Gelfand pairs is developed. This book is aimed at advanced undergraduates or beginning graduate students. The scope of the book is limited, with the aim of enabling students to reach a level suitable for starting PhD research. The main prerequisites for the book are elementary real, complex and functional analysis. In the later chapters, familiarity with some more advanced functional analysis is assumed, in particular with the spectral theory of (unbounded) self-adjoint operators on a Hilbert space. From the contents Fourier series Fourier integrals Locally compact groups Haar measures Harmonic analysis on locally compact abelian groups Theory and examples of Gelfand pairs Theory and examples of generalized Gelfand pairs

Book Harmonic Analysis  PMS 43   Volume 43

Download or read book Harmonic Analysis PMS 43 Volume 43 written by Elias M. Stein and published by Princeton University Press. This book was released on 2016-06-02 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an exposition of some of the main developments of the last twenty years in the following areas of harmonic analysis: singular integral and pseudo-differential operators, the theory of Hardy spaces, L\sup\ estimates involving oscillatory integrals and Fourier integral operators, relations of curvature to maximal inequalities, and connections with analysis on the Heisenberg group.

Book An Introduction to Number Theory

Download or read book An Introduction to Number Theory written by G. Everest and published by Springer Science & Business Media. This book was released on 2007-05-21 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes up-to-date material on recent developments and topics of significant interest, such as elliptic functions and the new primality test Selects material from both the algebraic and analytic disciplines, presenting several different proofs of a single result to illustrate the differing viewpoints and give good insight

Book Irresistible Integrals

    Book Details:
  • Author : George Boros
  • Publisher : Cambridge University Press
  • Release : 2004-06-21
  • ISBN : 9780521796361
  • Pages : 326 pages

Download or read book Irresistible Integrals written by George Boros and published by Cambridge University Press. This book was released on 2004-06-21 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2004, uses the problem of exact evaluation of definite integrals as a starting point for exploring many areas of mathematics.

Book MAPLE

    Book Details:
  • Author : Roy A. Nicolaides
  • Publisher : Cambridge University Press
  • Release : 1996-06-13
  • ISBN : 9780521562300
  • Pages : 490 pages

Download or read book MAPLE written by Roy A. Nicolaides and published by Cambridge University Press. This book was released on 1996-06-13 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a solid grounding in Maple, one of the best known high level symbolic mathematics programs.

Book An Introduction to Measure Theory

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Book Explorations in Harmonic Analysis

Download or read book Explorations in Harmonic Analysis written by Steven G. Krantz and published by Springer Science & Business Media. This book was released on 2009-05-24 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained text provides an introduction to modern harmonic analysis in the context in which it is actually applied, in particular, through complex function theory and partial differential equations. It takes the novice mathematical reader from the rudiments of harmonic analysis (Fourier series) to the Fourier transform, pseudodifferential operators, and finally to Heisenberg analysis.

Book Foundations of Potential Theory

Download or read book Foundations of Potential Theory written by Oliver Dimon Kellogg and published by Courier Corporation. This book was released on 1953-01-01 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to fundamentals of potential functions covers the force of gravity, fields of force, potentials, harmonic functions, electric images and Green's function, sequences of harmonic functions, fundamental existence theorems, the logarithmic potential, and much more. Detailed proofs rigorously worked out. 1929 edition.

Book An Introduction to Real Analysis

Download or read book An Introduction to Real Analysis written by Derek G. Ball and published by Elsevier. This book was released on 2014-05-17 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Real Analysis presents the concepts of real analysis and highlights the problems which necessitate the introduction of these concepts. Topics range from sets, relations, and functions to numbers, sequences, series, derivatives, and the Riemann integral. This volume begins with an introduction to some of the problems which are met in the use of numbers for measuring, and which provide motivation for the creation of real analysis. Attention then turns to real numbers that are built up from natural numbers, with emphasis on integers, rationals, and irrationals. The chapters that follow explore the conditions under which sequences have limits and derive the limits of many important sequences, along with functions of a real variable, Rolle's theorem and the nature of the derivative, and the theory of infinite series and how the concepts may be applied to decimal representation. The book also discusses some important functions and expansions before concluding with a chapter on the Riemann integral and the problem of area and its measurement. Throughout the text the stress has been upon concepts and interesting results rather than upon techniques. Each chapter contains exercises meant to facilitate understanding of the subject matter. This book is intended for students in colleges of education and others with similar needs.