EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Quantum and Vassiliev Knot Invariants

Download or read book An Introduction to Quantum and Vassiliev Knot Invariants written by David M. Jackson and published by Springer. This book was released on 2019-05-04 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to knot theory, focussing on Vassiliev invariants, quantum knot invariants constructed via representations of quantum groups, and how these two apparently distinct theories come together through the Kontsevich invariant. Consisting of four parts, the book opens with an introduction to the fundamentals of knot theory, and to knot invariants such as the Jones polynomial. The second part introduces quantum invariants of knots, working constructively from first principles towards the construction of Reshetikhin-Turaev invariants and a description of how these arise through Drinfeld and Jimbo's quantum groups. Its third part offers an introduction to Vassiliev invariants, providing a careful account of how chord diagrams and Jacobi diagrams arise in the theory, and the role that Lie algebras play. The final part of the book introduces the Konstevich invariant. This is a universal quantum invariant and a universal Vassiliev invariant, and brings together these two seemingly different families of knot invariants. The book provides a detailed account of the construction of the Jones polynomial via the quantum groups attached to sl(2), the Vassiliev weight system arising from sl(2), and how these invariants come together through the Kontsevich invariant.

Book Introduction to Vassiliev Knot Invariants

Download or read book Introduction to Vassiliev Knot Invariants written by S. Chmutov and published by Cambridge University Press. This book was released on 2012-05-24 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed exposition of the theory with an emphasis on its combinatorial aspects.

Book Quantum Invariants

    Book Details:
  • Author : Tomotada Ohtsuki
  • Publisher : World Scientific
  • Release : 2002
  • ISBN : 9789812811172
  • Pages : 516 pages

Download or read book Quantum Invariants written by Tomotada Ohtsuki and published by World Scientific. This book was released on 2002 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."

Book Knot Theory and Its Applications

Download or read book Knot Theory and Its Applications written by Kunio Murasugi and published by Springer Science & Business Media. This book was released on 2009-12-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the study of knots, providing insights into recent applications in DNA research and graph theory. It sets forth fundamental facts such as knot diagrams, braid representations, Seifert surfaces, tangles, and Alexander polynomials. It also covers more recent developments and special topics, such as chord diagrams and covering spaces. The author avoids advanced mathematical terminology and intricate techniques in algebraic topology and group theory. Numerous diagrams and exercises help readers understand and apply the theory. Each chapter includes a supplement with interesting historical and mathematical comments.

Book Knots  Links  Braids and 3 Manifolds

Download or read book Knots Links Braids and 3 Manifolds written by Viktor Vasilʹevich Prasolov and published by American Mathematical Soc.. This book was released on 1997 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.

Book Introductory Lectures on Knot Theory

Download or read book Introductory Lectures on Knot Theory written by Louis H. Kauffman and published by World Scientific. This book was released on 2012 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: More recently, Khovanov introduced link homology as a generalization of the Jones polynomial to homology of chain complexes and Ozsvath and Szabo developed Heegaard-Floer homology, that lifts the Alexander polynomial. These two significantly different theories are closely related and the dependencies are the object of intensive study. These ideas mark the beginning of a new era in knot theory that includes relationships with four-dimensional problems and the creation of new forms of algebraic topology relevant to knot theory. The theory of skein modules is an older development also having its roots in Jones discovery. Another significant and related development is the theory of virtual knots originated independently by Kauffman and by Goussarov Polyak and Viro in the '90s. All these topics and their relationships are the subject of the survey papers in this book.

Book Knots And Physics  Second Edition

Download or read book Knots And Physics Second Edition written by Louis H Kauffman and published by World Scientific. This book was released on 1994-01-15 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this second edition, the following recent papers have been added: “Gauss Codes, Quantum Groups and Ribbon Hopf Algebras”, “Spin Networks, Topology and Discrete Physics”, “Link Polynomials and a Graphical Calculus” and “Knots Tangles and Electrical Networks”. An appendix with a discussion on invariants of embedded graphs and Vassiliev invariants has also been included.This book is an introduction to knot and link invariants as generalized amplitudes (vacuum-vacuum amplitudes) for a quasi-physical process. The demands of knot theory, coupled with a quantum statistical framework, create a context that naturally and powerfully includes an extraordinary range of interrelated topics in topology and mathematical physics. The author takes a primarily combinatorial stance toward knot theory and its relations with these subjects. This has the advantage of providing very direct access to the algebra and to the combinatorial topology, as well as the physical ideas. This book is divided into 2 parts: Part I of the book is a systematic course in knots and physics starting from the ground up. Part II is a set of lectures on various topics related to and sometimes based on Part I. Part II also explores some side-topics such as frictional properties of knots, relations with combinatorics and knots in dynamical systems.

Book Knots and Feynman Diagrams

Download or read book Knots and Feynman Diagrams written by Dirk Kreimer and published by Cambridge University Press. This book was released on 2000-07-20 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explains how knot theory and Feynman diagrams can be used to illuminate problems in quantum field theory. The author emphasizes how new discoveries in mathematics have inspired conventional calculational methods for perturbative quantum field theory to become more elegant and potentially more powerful methods. The material illustrates what may possibly be the most productive interface between mathematics and physics. As a result, it will be of interest to graduate students and researchers in theoretical and particle physics as well as mathematics.

Book Lie Theory and Its Applications in Physics

Download or read book Lie Theory and Its Applications in Physics written by Vladimir Dobrev and published by Springer Nature. This book was released on 2023-01-29 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents modern trends in the area of symmetries and their applications based on contributions to the Workshop "Lie Theory and Its Applications in Physics" held in Sofia, Bulgaria (on-line) in June 2021. Traditionally, Lie theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrization of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrization and symmetries are meant in their widest sense, i.e., representation theory, algebraic geometry, number theory, infinite-dimensional Lie algebras and groups, superalgebras and supergroups, groups and quantum groups, noncommutative geometry, symmetries of linear and nonlinear partial differential operators, special functions, and others. Furthermore, the necessary tools from functional analysis are included. This is a big interdisciplinary and interrelated field. The topics covered in this Volume are the most modern trends in the field of the Workshop: Representation Theory, Symmetries in String Theories, Symmetries in Gravity Theories, Supergravity, Conformal Field Theory, Integrable Systems, Quantum Computing and Deep Learning, Entanglement, Applications to Quantum Theory, Exceptional quantum algebra for the standard model of particle physics, Gauge Theories and Applications, Structures on Lie Groups and Lie Algebras. This book is suitable for a broad audience of mathematicians, mathematical physicists, and theoretical physicists, including researchers and graduate students interested in Lie Theory.

Book Virtual Knots

    Book Details:
  • Author : Vasiliĭ Olegovich Manturov
  • Publisher : World Scientific
  • Release : 2012
  • ISBN : 9814401129
  • Pages : 553 pages

Download or read book Virtual Knots written by Vasiliĭ Olegovich Manturov and published by World Scientific. This book was released on 2012 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is the first systematic research completely devoted to a comprehensive study of virtual knots and classical knots as its integral part. The book is self-contained and contains up-to-date exposition of the key aspects of virtual (and classical) knot theory. Virtual knots were discovered by Louis Kauffman in 1996. When virtual knot theory arose, it became clear that classical knot theory was a small integral part of a larger theory, and studying properties of virtual knots helped one understand better some aspects of classical knot theory and encouraged the study of further problems. Virtual knot theory finds its applications in classical knot theory. Virtual knot theory occupies an intermediate position between the theory of knots in arbitrary three-manifold and classical knot theory. In this book we present the latest achievements in virtual knot theory including Khovanov homology theory and parity theory due to V O Manturov and graph-link theory due to both authors. By means of parity, one can construct functorial mappings from knots to knots, filtrations on the space of knots, refine many invariants and prove minimality of many series of knot diagrams. Graph-links can be treated as "diagramless knot theory": such "links" have crossings, but they do not have arcs connecting these crossings. It turns out, however, that to graph-links one can extend many methods of classical and virtual knot theories, in particular, the Khovanov homology and the parity theory.

Book Topology And Physics   Proceedings Of The Nankai International Conference In Memory Of Xiao song Lin

Download or read book Topology And Physics Proceedings Of The Nankai International Conference In Memory Of Xiao song Lin written by Zhenghan Wang and published by World Scientific. This book was released on 2008-08-11 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume, resulting from a conference at the Chern Institute of Mathematics dedicated to the memory of Xiao-Song Lin, presents a broad connection between topology and physics as exemplified by the relationship between low-dimensional topology and quantum field theory.The volume includes works on picture (2+1)-TQFTs and their applications to quantum computing, Berry phase and Yang-Baxterization of the braid relation, finite type invariant of knots, categorification and Khovanov homology, Gromov-Witten type invariants, twisted Alexander polynomials, Faddeev knots, generalized Ricci flow, Calabi-Yau problems for CR manifolds, Milnor's conjecture on volume of simplexes, Heegaard genera of 3-manifolds, and the (A,B)-slice problem. It also includes five unpublished papers of Xiao-Song Lin and various speeches related to the memorial conference.

Book Topology and Physics

    Book Details:
  • Author : Kevin Lin
  • Publisher : World Scientific
  • Release : 2008
  • ISBN : 981281910X
  • Pages : 466 pages

Download or read book Topology and Physics written by Kevin Lin and published by World Scientific. This book was released on 2008 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume, resulting from a conference at the Chern Institute of Mathematics dedicated to the memory of Xiao-Song Lin, presents a broad connection between topology and physics as exemplified by the relationship between low-dimensional topology and quantum field theory.The volume includes works on picture (2+1)-TQFTs and their applications to quantum computing, Berry phase and Yang?Baxterization of the braid relation, finite type invariant of knots, categorification and Khovanov homology, Gromov?Witten type invariants, twisted Alexander polynomials, Faddeev knots, generalized Ricci flow, Calabi?Yau problems for CR manifolds, Milnor's conjecture on volume of simplexes, Heegaard genera of 3-manifolds, and the (A,B)-slice problem. It also includes five unpublished papers of Xiao-Song Lin and various speeches related to the memorial conference.

Book Graphs on Surfaces and Their Applications

Download or read book Graphs on Surfaces and Their Applications written by Sergei K. Lando and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphs drawn on two-dimensional surfaces have always attracted researchers by their beauty and by the variety of difficult questions to which they give rise. The theory of such embedded graphs, which long seemed rather isolated, has witnessed the appearance of entirely unexpected new applications in recent decades, ranging from Galois theory to quantum gravity models, and has become a kind of a focus of a vast field of research. The book provides an accessible introduction to this new domain, including such topics as coverings of Riemann surfaces, the Galois group action on embedded graphs (Grothendieck's theory of "dessins d'enfants"), the matrix integral method, moduli spaces of curves, the topology of meromorphic functions, and combinatorial aspects of Vassiliev's knot invariants and, in an appendix by Don Zagier, the use of finite group representation theory. The presentation is concrete throughout, with numerous figures, examples (including computer calculations) and exercises, and should appeal to both graduate students and researchers.

Book Advances in Topological Quantum Field Theory

Download or read book Advances in Topological Quantum Field Theory written by John M. Bryden and published by Springer Science & Business Media. This book was released on 2007-09-27 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the conference proceedings of the NATO ARW during August 2001 at Kananaskis Village, Canada on 'New Techniques in Topological Quantum Field Theory'. This conference brought together specialists from a number of different fields all related to Topological Quantum Field Theory. The theme of this conference was to attempt to find new methods in quantum topology from the interaction with specialists in these other fields. The featured articles include papers by V. Vassiliev on combinatorial formulas for cohomology of spaces of Knots, the computation of Ohtsuki series by N. Jacoby and R. Lawrence, and a paper by M. Asaeda and J. Przytycki on the torsion conjecture for Khovanov homology by Shumakovitch. Moreover, there are articles on more classical topics related to manifolds and braid groups by such well known authors as D. Rolfsen, H. Zieschang and F. Cohen.

Book Geometric and Topological Methods for Quantum Field Theory

Download or read book Geometric and Topological Methods for Quantum Field Theory written by Hernan Ocampo and published by Springer Science & Business Media. This book was released on 2005-06-13 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers an introduction, in the form of four extensive lectures, to some recent developments in several active topics at the interface between geometry, topology and quantum field theory. The first lecture is by Christine Lescop on knot invariants and configuration spaces, in which a universal finite-type invariant for knots is constructed as a series of integrals over configuration spaces. This is followed by the contribution of Raimar Wulkenhaar on Euclidean quantum field theory from a statistical point of view. The author also discusses possible renormalization techniques on noncommutative spaces. The third lecture is by Anamaria Font and Stefan Theisen on string compactification with unbroken supersymmetry. The authors show that this requirement leads to internal spaces of special holonomy and describe Calabi-Yau manifolds in detail. The last lecture, by Thierry Fack, is devoted to a K-theory proof of the Atiyah-Singer index theorem and discusses some applications of K-theory to noncommutative geometry. These lectures notes, which are aimed in particular at graduate students in physics and mathematics, start with introductory material before presenting more advanced results. Each chapter is self-contained and can be read independently.

Book Lectures at Knots  96

Download or read book Lectures at Knots 96 written by S. Suzuki and published by World Scientific. This book was released on 1997 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of nine lectures given at an international workshop on knot theory held in July 1996 at Waseda University Conference Centre. It was organized by the International Research Institute of Mathematical Society of Japan. The workshop was attended by nearly 170 mathematicians from Japan and 14 other countries, most of whom were specialists in knot theory. The lectures can serve as an introduction to the field for advanced undergraduates, graduates and also researchers working in areas such as theoretical physics and molecular biology.

Book Knots

    Book Details:
  • Author : Alekseĭ Bronislavovich Sosinskiĭ
  • Publisher : Harvard University Press
  • Release : 2002
  • ISBN : 9780674009448
  • Pages : 158 pages

Download or read book Knots written by Alekseĭ Bronislavovich Sosinskiĭ and published by Harvard University Press. This book was released on 2002 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, written by a mathematician known for his own work on knot theory, is a clear, concise, and engaging introduction to this complicated subject, and a guide to the basic ideas and applications of knot theory. 63 illustrations.