EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction To Number Theory

Download or read book Introduction To Number Theory written by Richard Michael Hill and published by World Scientific Publishing Company. This book was released on 2017-12-04 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'Probably its most significant distinguishing feature is that this book is more algebraically oriented than most undergraduate number theory texts.'MAA ReviewsIntroduction to Number Theory is dedicated to concrete questions about integers, to place an emphasis on problem solving by students. When undertaking a first course in number theory, students enjoy actively engaging with the properties and relationships of numbers.The book begins with introductory material, including uniqueness of factorization of integers and polynomials. Subsequent topics explore quadratic reciprocity, Hensel's Lemma, p-adic powers series such as exp(px) and log(1+px), the Euclidean property of some quadratic rings, representation of integers as norms from quadratic rings, and Pell's equation via continued fractions.Throughout the five chapters and more than 100 exercises and solutions, readers gain the advantage of a number theory book that focuses on doing calculations. This textbook is a valuable resource for undergraduates or those with a background in university level mathematics.

Book Introduction to Number Theory

Download or read book Introduction to Number Theory written by Anthony Vazzana and published by CRC Press. This book was released on 2007-10-30 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topi

Book Introduction to Number Theory

Download or read book Introduction to Number Theory written by Mathew Crawford and published by Ingram. This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learn the fundamentals of number theory from former MATHCOUNTS, AHSME, and AIME perfect scorer Mathew Crawford. Topics covered in the book include primes & composites, multiples & divisors, prime factorization and its uses, base numbers, modular arithmetic, divisibility rules, linear congruences, how to develop number sense, and much more. The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, so the student has a chance to solve them without help before proceeding. The text then includes motivated solutions to these problems, through which concepts and curriculum of number theory are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains hundreds of problems ... This book is ideal for students who have mastered basic algebra, such as solving linear equations. Middle school students preparing for MATHCOUNTS, high school students preparing for the AMC, and other students seeking to master the fundamentals of number theory will find this book an instrumental part of their mathematics libraries."--Publisher's website

Book A Classical Introduction to Modern Number Theory

Download or read book A Classical Introduction to Modern Number Theory written by K. Ireland and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.

Book Friendly Introduction to Number Theory  a  Classic Version

Download or read book Friendly Introduction to Number Theory a Classic Version written by Joseph Silverman and published by . This book was released on 2017-02-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For one-semester undergraduate courses in Elementary Number Theory This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price. Please visit www.pearsonhighered.com/math-classics-series for a complete list of titles. A Friendly Introduction to Number Theory, 4th Edition is designed to introduce students to the overall themes and methodology of mathematics through the detailed study of one particular facet-number theory. Starting with nothing more than basic high school algebra, students are gradually led to the point of actively performing mathematical research while getting a glimpse of current mathematical frontiers. The writing is appropriate for the undergraduate audience and includes many numerical examples, which are analyzed for patterns and used to make conjectures. Emphasis is on the methods used for proving theorems rather than on specific results.

Book A Concise Introduction to the Theory of Numbers

Download or read book A Concise Introduction to the Theory of Numbers written by Alan Baker and published by Cambridge University Press. This book was released on 1984-11-29 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, Professor Baker describes the rudiments of number theory in a concise, simple and direct manner.

Book An Experimental Introduction to Number Theory

Download or read book An Experimental Introduction to Number Theory written by Benjamin Hutz and published by American Mathematical Soc.. This book was released on 2018-04-17 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents material suitable for an undergraduate course in elementary number theory from a computational perspective. It seeks to not only introduce students to the standard topics in elementary number theory, such as prime factorization and modular arithmetic, but also to develop their ability to formulate and test precise conjectures from experimental data. Each topic is motivated by a question to be answered, followed by some experimental data, and, finally, the statement and proof of a theorem. There are numerous opportunities throughout the chapters and exercises for the students to engage in (guided) open-ended exploration. At the end of a course using this book, the students will understand how mathematics is developed from asking questions to gathering data to formulating and proving theorems. The mathematical prerequisites for this book are few. Early chapters contain topics such as integer divisibility, modular arithmetic, and applications to cryptography, while later chapters contain more specialized topics, such as Diophantine approximation, number theory of dynamical systems, and number theory with polynomials. Students of all levels will be drawn in by the patterns and relationships of number theory uncovered through data driven exploration.

Book Number  Shape    Symmetry

Download or read book Number Shape Symmetry written by Diane L. Herrmann and published by CRC Press. This book was released on 2012-10-18 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.

Book Fundamentals of Number Theory

Download or read book Fundamentals of Number Theory written by William J. LeVeque and published by Courier Corporation. This book was released on 2014-01-05 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given — making the book self-contained in this respect. The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diophantine approximation, and more. Included are discussions of topics not always found in introductory texts: factorization and primality of large integers, p-adic numbers, algebraic number fields, Brun's theorem on twin primes, and the transcendence of e, to mention a few. Readers will find a substantial number of well-chosen problems, along with many notes and bibliographical references selected for readability and relevance. Five helpful appendixes — containing such study aids as a factor table, computer-plotted graphs, a table of indices, the Greek alphabet, and a list of symbols — and a bibliography round out this well-written text, which is directed toward undergraduate majors and beginning graduate students in mathematics. No post-calculus prerequisite is assumed. 1977 edition.

Book Elementary Introduction to Number Theory

Download or read book Elementary Introduction to Number Theory written by Calvin T. Long and published by D.C. Heath. This book was released on 1972 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Number Theory

    Book Details:
  • Author : Benjamin Fine
  • Publisher : Springer Science & Business Media
  • Release : 2007-06-04
  • ISBN : 0817645411
  • Pages : 350 pages

Download or read book Number Theory written by Benjamin Fine and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction and overview of number theory based on the distribution and properties of primes. This unique approach provides both a firm background in the standard material as well as an overview of the whole discipline. All the essential topics are covered: fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. Analytic number theory and algebraic number theory both receive a solid introductory treatment. The book’s user-friendly style, historical context, and wide range of exercises make it ideal for self study and classroom use.

Book An Introduction to Number Theory with Cryptography

Download or read book An Introduction to Number Theory with Cryptography written by James Kraft and published by CRC Press. This book was released on 2018-01-29 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the success of the first edition, An Introduction to Number Theory with Cryptography, Second Edition, increases coverage of the popular and important topic of cryptography, integrating it with traditional topics in number theory. The authors have written the text in an engaging style to reflect number theory's increasing popularity. The book is designed to be used by sophomore, junior, and senior undergraduates, but it is also accessible to advanced high school students and is appropriate for independent study. It includes a few more advanced topics for students who wish to explore beyond the traditional curriculum. Features of the second edition include Over 800 exercises, projects, and computer explorations Increased coverage of cryptography, including Vigenere, Stream, Transposition,and Block ciphers, along with RSA and discrete log-based systems "Check Your Understanding" questions for instant feedback to students New Appendices on "What is a proof?" and on Matrices Select basic (pre-RSA) cryptography now placed in an earlier chapter so that the topic can be covered right after the basic material on congruences Answers and hints for odd-numbered problems About the Authors: Jim Kraft received his Ph.D. from the University of Maryland in 1987 and has published several research papers in algebraic number theory. His previous teaching positions include the University of Rochester, St. Mary's College of California, and Ithaca College, and he has also worked in communications security. Dr. Kraft currently teaches mathematics at the Gilman School. Larry Washington received his Ph.D. from Princeton University in 1974 and has published extensively in number theory, including books on cryptography (with Wade Trappe), cyclotomic fields, and elliptic curves. Dr. Washington is currently Professor of Mathematics and Distinguished Scholar-Teacher at the University of Maryland.

Book Higher Arithmetic

    Book Details:
  • Author : Harold M. Edwards
  • Publisher : American Mathematical Soc.
  • Release : 2008
  • ISBN : 9780821844397
  • Pages : 228 pages

Download or read book Higher Arithmetic written by Harold M. Edwards and published by American Mathematical Soc.. This book was released on 2008 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the topics featured in this textbook are: congruences; the fundamental theorem of arithmetic; exponentiation and orders; primality testing; the RSA cipher system; polynomials; modules of hypernumbers; signatures of equivalence classes; and the theory of binary quadratic forms. The book contains exercises with answers.

Book Number Theory and Geometry  An Introduction to Arithmetic Geometry

Download or read book Number Theory and Geometry An Introduction to Arithmetic Geometry written by Álvaro Lozano-Robledo and published by American Mathematical Soc.. This book was released on 2019-03-21 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometry and the theory of numbers are as old as some of the oldest historical records of humanity. Ever since antiquity, mathematicians have discovered many beautiful interactions between the two subjects and recorded them in such classical texts as Euclid's Elements and Diophantus's Arithmetica. Nowadays, the field of mathematics that studies the interactions between number theory and algebraic geometry is known as arithmetic geometry. This book is an introduction to number theory and arithmetic geometry, and the goal of the text is to use geometry as the motivation to prove the main theorems in the book. For example, the fundamental theorem of arithmetic is a consequence of the tools we develop in order to find all the integral points on a line in the plane. Similarly, Gauss's law of quadratic reciprocity and the theory of continued fractions naturally arise when we attempt to determine the integral points on a curve in the plane given by a quadratic polynomial equation. After an introduction to the theory of diophantine equations, the rest of the book is structured in three acts that correspond to the study of the integral and rational solutions of linear, quadratic, and cubic curves, respectively. This book describes many applications including modern applications in cryptography; it also presents some recent results in arithmetic geometry. With many exercises, this book can be used as a text for a first course in number theory or for a subsequent course on arithmetic (or diophantine) geometry at the junior-senior level.

Book An Illustrated Theory of Numbers

Download or read book An Illustrated Theory of Numbers written by Martin H. Weissman and published by American Mathematical Soc.. This book was released on 2020-09-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: News about this title: — Author Marty Weissman has been awarded a Guggenheim Fellowship for 2020. (Learn more here.) — Selected as a 2018 CHOICE Outstanding Academic Title — 2018 PROSE Awards Honorable Mention An Illustrated Theory of Numbers gives a comprehensive introduction to number theory, with complete proofs, worked examples, and exercises. Its exposition reflects the most recent scholarship in mathematics and its history. Almost 500 sharp illustrations accompany elegant proofs, from prime decomposition through quadratic reciprocity. Geometric and dynamical arguments provide new insights, and allow for a rigorous approach with less algebraic manipulation. The final chapters contain an extended treatment of binary quadratic forms, using Conway's topograph to solve quadratic Diophantine equations (e.g., Pell's equation) and to study reduction and the finiteness of class numbers. Data visualizations introduce the reader to open questions and cutting-edge results in analytic number theory such as the Riemann hypothesis, boundedness of prime gaps, and the class number 1 problem. Accompanying each chapter, historical notes curate primary sources and secondary scholarship to trace the development of number theory within and outside the Western tradition. Requiring only high school algebra and geometry, this text is recommended for a first course in elementary number theory. It is also suitable for mathematicians seeking a fresh perspective on an ancient subject.

Book Number Theory and Its History

Download or read book Number Theory and Its History written by Oystein Ore and published by Courier Corporation. This book was released on 2012-07-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.

Book Discrete Mathematics

    Book Details:
  • Author : Oscar Levin
  • Publisher : Createspace Independent Publishing Platform
  • Release : 2016-08-16
  • ISBN : 9781534970748
  • Pages : 342 pages

Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.