EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Molecular Dynamics

Download or read book An Introduction to Molecular Dynamics written by Mark S. Kemp and published by Nova Science Publishers. This book was released on 2019 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In the opening chapter of An Introduction to Molecular Dynamics, the method of statistical geometry, based on the construction of a Voronoi polyhedral, is applied to the pattern recognition of atomic environments and to the investigation of the local order in molecular dynamics-simulated materials. Next, the authors discuss the methodology of bimolecular simulations and their advancements, as well as their applications in the field of nanoparticle-biomolecular interactions. The theory of molecular dynamics simulation and some of the recent molecular dynamics methods such as steered molecular dynamics, umbrella sampling, and coarse-grained simulation are also discussed. The use of auxiliary programs in the cases of modified cyclodextrins is discussed. Additionally, results from molecular dynamics studies on cases of inclusion compounds of molecules of different sizes and shapes encapsulated in the same host cyclodextrin have been examined and compared. In closing, the authors discuss the methodology of molecular dynamics simulation with a non-constant force field. In the context of molecular simulations, the term "force field" refers to a set of equations and parameters for the calculation of forces acting on the particles of the system and its potential energy"--

Book A Practical Introduction to the Simulation of Molecular Systems

Download or read book A Practical Introduction to the Simulation of Molecular Systems written by Martin J. Field and published by Cambridge University Press. This book was released on 2007-07-19 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular simulation is a powerful tool in materials science, physics, chemistry and biomolecular fields. This updated edition provides a pragmatic introduction to a wide range of techniques for the simulation of molecular systems at the atomic level. The first part concentrates on methods for calculating the potential energy of a molecular system, with new chapters on quantum chemical, molecular mechanical and hybrid potential techniques. The second part describes methods examining conformational, dynamical and thermodynamical properties of systems, covering techniques including geometry-optimization, normal-mode analysis, molecular dynamics, and Monte Carlo simulation. Using Python, the second edition includes numerous examples and program modules for each simulation technique, allowing the reader to perform the calculations and appreciate the inherent difficulties involved in each. This is a valuable resource for researchers and graduate students wanting to know how to use atomic-scale molecular simulations. Supplementary material, including the program library and technical information, available through www.cambridge.org/9780521852524.

Book Understanding Molecular Simulation

Download or read book Understanding Molecular Simulation written by Daan Frenkel and published by Elsevier. This book was released on 2001-10-19 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: Transition path sampling and diffusive barrier crossing to simulaterare events Dissipative particle dynamic as a course-grained simulation technique Novel schemes to compute the long-ranged forces Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations Multiple-time step algorithms as an alternative for constraints Defects in solids The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.

Book The Art of Molecular Dynamics Simulation

Download or read book The Art of Molecular Dynamics Simulation written by D. C. Rapaport and published by Cambridge University Press. This book was released on 2004-04 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: First time paperback of successful physics monograph. Copyright © Libri GmbH. All rights reserved.

Book Molecular Dynamics Simulation

Download or read book Molecular Dynamics Simulation written by Kun Zhou and published by Academic Press. This book was released on 2022-02-10 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular Dynamic Simulation: Fundamentals and Applications explains the basic principles of MD simulation and explores its recent developments and roles in advanced modeling approaches. The implementation of MD simulation and its application to various aspects of materials science and engineering including mechanical, thermal, mass transportation, and physical/chemical reaction problems are illustrated. Innovative modeling techniques that apply MD to explore the mechanics of typical nanomaterials and nanostructures and to characterize crystalline, amorphous, and liquid systems are also presented. The rich research experience of the authors in MD simulation will ensure that the readers are provided with both an in-depth understanding of MD simulation and clear technical guidance. Provides a comprehensive overview of the underlying theories of molecular dynamics (MD) simulation Presents application-based examples pertaining to a broad range of mechanical, thermal, and mass transport problems Explores innovative modeling techniques for simulating typical nanomaterials and nanostructures and for characterizing crystalline, amorphous, and liquid systems

Book An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation

Download or read book An Introduction to Markov State Models and Their Application to Long Timescale Molecular Simulation written by Gregory R. Bowman and published by Springer Science & Business Media. This book was released on 2013-12-02 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book volume is to explain the importance of Markov state models to molecular simulation, how they work, and how they can be applied to a range of problems. The Markov state model (MSM) approach aims to address two key challenges of molecular simulation: 1) How to reach long timescales using short simulations of detailed molecular models. 2) How to systematically gain insight from the resulting sea of data. MSMs do this by providing a compact representation of the vast conformational space available to biomolecules by decomposing it into states sets of rapidly interconverting conformations and the rates of transitioning between states. This kinetic definition allows one to easily vary the temporal and spatial resolution of an MSM from high-resolution models capable of quantitative agreement with (or prediction of) experiment to low-resolution models that facilitate understanding. Additionally, MSMs facilitate the calculation of quantities that are difficult to obtain from more direct MD analyses, such as the ensemble of transition pathways. This book introduces the mathematical foundations of Markov models, how they can be used to analyze simulations and drive efficient simulations, and some of the insights these models have yielded in a variety of applications of molecular simulation.

Book Computational Many Particle Physics

Download or read book Computational Many Particle Physics written by Holger Fehske and published by Springer. This book was released on 2007-12-10 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Looking for the real state of play in computational many-particle physics? Look no further. This book presents an overview of state-of-the-art numerical methods for studying interacting classical and quantum many-particle systems. A broad range of techniques and algorithms are covered, and emphasis is placed on their implementation on modern high-performance computers. This excellent book comes complete with online files and updates allowing readers to stay right up to date.

Book Introduction to Practice of Molecular Simulation

Download or read book Introduction to Practice of Molecular Simulation written by Akira Satoh and published by Elsevier. This book was released on 2010-12-17 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most important and main concepts of the molecular and microsimulation techniques. It enables readers to improve their skills in developing simulation programs by providing physical problems and sample simulation programs for them to use.

Book An Introduction to Molecular Dynamics Simulation of Polymer Composites

Download or read book An Introduction to Molecular Dynamics Simulation of Polymer Composites written by Sumit Sharma and published by Nova Science Publishers. This book was released on 2020-03-03 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book will be beneficial for students, researchers and scientists working in the field of molecular dynamics simulation. In this book, Materials Studio software developed by Accelrys, a software company headquartered in the United States, has been used for performing the simulations and analysis. The source codes written in the book can be used by any one for modeling. The book starts with an introduction to molecular dynamics. Then various molecular dynamics methods will be discussed in detail. As the book progresses, various case studies related to modeling of composites at nano level will be discussed. The properties predicted are mechanical, thermal, optical and electrical. The concept of perl scripting has also been discussed in detail. Lastly the applications of molecular dynamics in various fields of engineering and technology will be discussed. The nanocomposite materials discussed in this book include polymer-matrix composites. The reinforcements used are carbon nanotubes, graphene, nanoparticles and nanofibers"--

Book Molecular Dynamics Simulation

Download or read book Molecular Dynamics Simulation written by J. M. Haile and published by Wiley-Interscience. This book was released on 1997-03-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Provides a lot of reading pleasure and many new insights." -Journal of Molecular Structure "This is the most entertaining, stimulating and useful book which can be thoroughly recommended to anyone with an interest in computer simulation." -Contemporary Physics "A very useful introduction . . . more interesting to read than the often dry equation-based texts." -Journal of the American Chemical Society Written especially for the novice, Molecular Dynamics Simulation demonstrates how molecular dynamics simulations work and how to perform them, focusing on how to devise a model for specific molecules and then how to simulate their movements using a computer. This book provides a collection of methods that until now have been scattered through the literature of the last 25 years. It reviews elements of sampling theory and discusses how modern notions of chaos and nonlinear dynamics explain the workings of molecular dynamics. Stresses easy-to-use molecules * Provides sample calculations and figures * Includes four complete FORTRAN codes

Book Computer Simulation of Liquids

Download or read book Computer Simulation of Liquids written by M. P. Allen and published by Oxford University Press. This book was released on 1989 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation is an essential tool in studying the chemistry and physics of liquids. Simulations allow us to develop models and to test them against experimental data. This book is an introduction and practical guide to the molecular dynamics and Monte Carlo methods.

Book Molecular Simulations

Download or read book Molecular Simulations written by Saman Alavi and published by John Wiley & Sons. This book was released on 2020-06-29 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides hands-on knowledge enabling students of and researchers in chemistry, biology, and engineering to perform molecular simulations This book introduces the fundamentals of molecular simulations for a broad, practice-oriented audience and presents a thorough overview of the underlying concepts. It covers classical mechanics for many-molecule systems as well as force-field models in classical molecular dynamics; introduces probability concepts and statistical mechanics; and analyzes numerous simulation methods, techniques, and applications. Molecular Simulations: Fundamentals and Practice starts by covering Newton's equations, which form the basis of classical mechanics, then continues on to force-field methods for modelling potential energy surfaces. It gives an account of probability concepts before subsequently introducing readers to statistical and quantum mechanics. In addition to Monte-Carlo methods, which are based on random sampling, the core of the book covers molecular dynamics simulations in detail and shows how to derive critical physical parameters. It finishes by presenting advanced techniques, and gives invaluable advice on how to set up simulations for a diverse range of applications. -Addresses the current need of students of and researchers in chemistry, biology, and engineering to understand and perform their own molecular simulations -Covers the nitty-gritty ? from Newton's equations and classical mechanics over force-field methods, potential energy surfaces, and probability concepts to statistical and quantum mechanics -Introduces physical, chemical, and mathematical background knowledge in direct relation with simulation practice -Highlights deterministic approaches and random sampling (eg: molecular dynamics versus Monte-Carlo methods) -Contains advanced techniques and practical advice for setting up different simulations to prepare readers entering this exciting field Molecular Simulations: Fundamentals and Practice is an excellent book benefitting chemist, biologists, engineers as well as materials scientists and those involved in biotechnology.

Book Computer Simulations of Surfaces and Interfaces

Download or read book Computer Simulations of Surfaces and Interfaces written by Burkhard Dünweg and published by Springer Science & Business Media. This book was released on 2003-12-31 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute, Albena, Bulgaria, from 9 to 20 September 2002

Book Statistical Mechanics  Theory and Molecular Simulation

Download or read book Statistical Mechanics Theory and Molecular Simulation written by Mark Tuckerman and published by OUP Oxford. This book was released on 2010-02-11 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex systems that bridge the traditional disciplines of physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computers. The aim of this book is to prepare burgeoning users and developers to become active participants in this exciting and rapidly advancing research area by uniting for the first time, in one monograph, the basic concepts of equilibrium and time-dependent statistical mechanics with the modern techniques used to solve the complex problems that arise in real-world applications. The book contains a detailed review of classical and quantum mechanics, in-depth discussions of the most commonly used ensembles simultaneously with modern computational techniques such as molecular dynamics and Monte Carlo, and important topics including free-energy calculations, linear-response theory, harmonic baths and the generalized Langevin equation, critical phenomena, and advanced conformational sampling methods. Burgeoning users and developers are thus provided firm grounding to become active participants in this exciting and rapidly advancing research area, while experienced practitioners will find the book to be a useful reference tool for the field.

Book Numerical Simulation in Molecular Dynamics

Download or read book Numerical Simulation in Molecular Dynamics written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2007-08-16 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details the necessary numerical methods, the theoretical background and foundations and the techniques involved in creating computer particle models, including linked-cell method, SPME-method, tree codes, amd multipol technique. It illustrates modeling, discretization, algorithms and their parallel implementation with MPI on computer systems with distributed memory. The text offers step-by-step explanations of numerical simulation, providing illustrative code examples. With the description of the algorithms and the presentation of the results of various simulations from fields such as material science, nanotechnology, biochemistry and astrophysics, the reader of this book will learn how to write programs capable of running successful experiments for molecular dynamics.

Book Introduction to Molecular Beams Gas Dynamics

Download or read book Introduction to Molecular Beams Gas Dynamics written by Giovanni Sanna and published by World Scientific. This book was released on 2005 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Molecular Beams Gas Dynamics is devoted to the theory and phenomenology of supersonic molecular beams. The book describes the main physical idea and mathematical methods of the gas dynamics of molecular beams, while the detailed derivation of results and equations is accompanied by an explanation of their physical meaning. Many of the applications of supersonic molecular beams are discussed, including their application to molecular spectroscopy, and the study of surface phonons by monoatomic and monokinetic beams, and the study of intermolecular potentials and the onset of condensation. The phenomenology of supersonic beams can appear complex to those not experienced in supersonic gas dynamics and, as a result, the few existing reviews on the topic generally assume a limited level of knowledge. The book begins with a quantitative description of the fundamental laws of gas dynamics and goes on to explain such phenomena. It analyzes the evolution of the gas jet from the continuum to the regime of almost free collisions between molecules, and includes numerous figures, illustrations, tables and references.

Book Molecular Dynamics Simulations

    Book Details:
  • Author : Maria Emilova Velinova
  • Publisher : Delve Publishing
  • Release : 2017-11
  • ISBN : 9781773610849
  • Pages : 0 pages

Download or read book Molecular Dynamics Simulations written by Maria Emilova Velinova and published by Delve Publishing. This book was released on 2017-11 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Molecular dynamics method is a numerical statistical mechanics technique for integration of the equations of motion for a many-particle system. The particle-particle interactions and the energy are quantified using the potentials and parameter sets of molecular-mechanics force fields. The resulting trajectories can then be used to evaluate various time-dependent structural, transport and thermodynamic properties of the system.In this book, Molecular Dynamics Simulations, it is presented the state-of-the-art in the field, from both a methodological and application perspective. The book begins with a brief introduction of the molecular dynamics simulations formalism. Important definitions and terminology, used later in the book, have been explained. For example, terms as integrators, SHAKE (or LINCS) algorithm, periodical boundary conditions, cutoff, ensemble and many others are considered in the introduction.Molecular dynamics simulations are suitable for describing of systems with extensive number of degrees of freedom such as the biologically relevant targets. The next parts contain collection of articles, which illustrate the computer experiments using molecular dynamics simulations in the studies of synthetic and biological macromolecules. The topics covered of this book include: molecular dynamics simulations of biological membranes, proteins, polymers, peptides, and nanotubes.