EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Introduction to Mathematics

Download or read book An Introduction to Mathematics written by Alfred North Whitehead and published by Courier Dover Publications. This book was released on 2017-05-04 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise volume for general students by prominent philosopher and mathematician explains what math is and does, and how mathematicians do it. "Lucid and cogent ... should delight you." — The New York Times. 1911 edition.

Book A Classical Introduction to Modern Number Theory

Download or read book A Classical Introduction to Modern Number Theory written by K. Ireland and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.

Book The History of Mathematics

Download or read book The History of Mathematics written by David M. Burton and published by WCB/McGraw-Hill. This book was released on 1985 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The History of Mathematics: An Introduction," Sixth Edition, is written for the one- or two-semester math history course taken by juniors or seniors, and covers the history behind the topics typically covered in an undergraduate math curriculum or in elementary schools or high schools. Elegantly written in David Burton's imitable prose, this classic text provides rich historical context to the mathematics that undergrad math and math education majors encounter every day. Burton illuminates the people, stories, and social context behind mathematics'greatest historical advances while maintaining appropriate focus on the mathematical concepts themselves. Its wealth of information, mathematical and historical accuracy, and renowned presentation make The History of Mathematics: An Introduction, Sixth Edition a valuable resource that teachers and students will want as part of a permanent library.

Book An Introduction to the Geometry of Numbers

Download or read book An Introduction to the Geometry of Numbers written by J.W.S. Cassels and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "A well-written, very thorough account ... Among the topics are lattices, reduction, Minkowskis Theorem, distance functions, packings, and automorphs; some applications to number theory; excellent bibliographical references." The American Mathematical Monthly

Book Introduction to the Calculus of Variations

Download or read book Introduction to the Calculus of Variations written by Hans Sagan and published by Courier Corporation. This book was released on 2012-04-26 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a thorough understanding of calculus of variations and prepares readers for the study of modern optimal control theory. Selected variational problems and over 400 exercises. Bibliography. 1969 edition.

Book Classical and Nonclassical Logics

Download or read book Classical and Nonclassical Logics written by Eric Schechter and published by Princeton University Press. This book was released on 2005-08-28 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classical logic is traditionally introduced by itself, but that makes it seem arbitrary and unnatural. This text introduces classical alongside several nonclassical logics (relevant, constructive, quantative, paraconsistent).

Book Mathematics Form and Function

Download or read book Mathematics Form and Function written by Saunders MacLane and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.

Book Calculus on Manifolds

    Book Details:
  • Author : Michael Spivak
  • Publisher : Westview Press
  • Release : 1965
  • ISBN : 9780805390216
  • Pages : 164 pages

Download or read book Calculus on Manifolds written by Michael Spivak and published by Westview Press. This book was released on 1965 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.

Book Introduction to Calculus and Analysis II 1

Download or read book Introduction to Calculus and Analysis II 1 written by Richard Courant and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "...one of the best textbooks introducing several generations of mathematicians to higher mathematics. ... This excellent book is highly recommended both to instructors and students." --Acta Scientiarum Mathematicarum, 1991

Book An Introduction to Abstract Mathematics

Download or read book An Introduction to Abstract Mathematics written by Robert J. Bond and published by Waveland Press. This book was released on 2007-08-24 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bond and Keane explicate the elements of logical, mathematical argument to elucidate the meaning and importance of mathematical rigor. With definitions of concepts at their disposal, students learn the rules of logical inference, read and understand proofs of theorems, and write their own proofs all while becoming familiar with the grammar of mathematics and its style. In addition, they will develop an appreciation of the different methods of proof (contradiction, induction), the value of a proof, and the beauty of an elegant argument. The authors emphasize that mathematics is an ongoing, vibrant disciplineits long, fascinating history continually intersects with territory still uncharted and questions still in need of answers. The authors extensive background in teaching mathematics shines through in this balanced, explicit, and engaging text, designed as a primer for higher- level mathematics courses. They elegantly demonstrate process and application and recognize the byproducts of both the achievements and the missteps of past thinkers. Chapters 1-5 introduce the fundamentals of abstract mathematics and chapters 6-8 apply the ideas and techniques, placing the earlier material in a real context. Readers interest is continually piqued by the use of clear explanations, practical examples, discussion and discovery exercises, and historical comments.

Book Introduction to Difference Equations

Download or read book Introduction to Difference Equations written by Samuel Goldberg and published by Courier Corporation. This book was released on 1986-01-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exceptionally clear exposition of an important mathematical discipline and its applications to sociology, economics, and psychology. Topics include calculus of finite differences, difference equations, matrix methods, and more. 1958 edition.

Book A Readable Introduction to Real Mathematics

Download or read book A Readable Introduction to Real Mathematics written by Daniel Rosenthal and published by Springer. This book was released on 2014-07-03 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for an undergraduate course or for independent study, this text presents sophisticated mathematical ideas in an elementary and friendly fashion. The fundamental purpose of this book is to engage the reader and to teach a real understanding of mathematical thinking while conveying the beauty and elegance of mathematics. The text focuses on teaching the understanding of mathematical proofs. The material covered has applications both to mathematics and to other subjects. The book contains a large number of exercises of varying difficulty, designed to help reinforce basic concepts and to motivate and challenge the reader. The sole prerequisite for understanding the text is basic high school algebra; some trigonometry is needed for Chapters 9 and 12. Topics covered include: mathematical induction - modular arithmetic - the fundamental theorem of arithmetic - Fermat's little theorem - RSA encryption - the Euclidean algorithm -rational and irrational numbers - complex numbers - cardinality - Euclidean plane geometry - constructability (including a proof that an angle of 60 degrees cannot be trisected with a straightedge and compass). This textbook is suitable for a wide variety of courses and for a broad range of students in the fields of education, liberal arts, physical sciences and mathematics. Students at the senior high school level who like mathematics will also be able to further their understanding of mathematical thinking by reading this book.

Book I Want to Be a Mathematician  An Automathography

Download or read book I Want to Be a Mathematician An Automathography written by Paul R. Halmos and published by American Mathematical Soc.. This book was released on 2020-08-03 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Introduction to Mathematical Cryptography

Download or read book An Introduction to Mathematical Cryptography written by Jeffrey Hoffstein and published by Springer. This book was released on 2014-09-11 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.

Book An Introduction to Mathematical Logic

Download or read book An Introduction to Mathematical Logic written by Richard E. Hodel and published by Courier Corporation. This book was released on 2013-01-01 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

Book Journey into Mathematics

Download or read book Journey into Mathematics written by Joseph J. Rotman and published by Courier Corporation. This book was released on 2013-01-18 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment covers the mechanics of writing proofs, the area and circumference of circles, and complex numbers and their application to real numbers. 1998 edition.

Book Introduction to Analysis

    Book Details:
  • Author : William R. Wade
  • Publisher :
  • Release : 2013-11-01
  • ISBN : 9781292039329
  • Pages : 656 pages

Download or read book Introduction to Analysis written by William R. Wade and published by . This book was released on 2013-11-01 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: For one- or two-semester junior or senior level courses in Advanced Calculus, Analysis I, or Real Analysis. This text prepares students for future courses that use analytic ideas, such as real and complex analysis, partial and ordinary differential equations, numerical analysis, fluid mechanics, and differential geometry. This book is designed to challenge advanced students while encouraging and helping weaker students. Offering readability, practicality and flexibility, Wade presents fundamental theorems and ideas from a practical viewpoint, showing students the motivation behind the mathematics and enabling them to construct their own proofs.