Download or read book An Introduction to Distributed and Parallel Processing written by John A. Sharp and published by Wiley-Blackwell. This book was released on 1987 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the highly topical areas of distributed and parallel processing, and will be of value to computer science undergraduates, students of electrical engineering, electronics and microprocessors, and non-specialist professionals working in related areas.
Download or read book Introduction to Parallel Programming written by Subodh Kumar and published by Cambridge University Press. This book was released on 2022-07-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In modern computer science, there exists no truly sequential computing system; and most advanced programming is parallel programming. This is particularly evident in modern application domains like scientific computation, data science, machine intelligence, etc. This lucid introductory textbook will be invaluable to students of computer science and technology, acting as a self-contained primer to parallel programming. It takes the reader from introduction to expertise, addressing a broad gamut of issues. It covers different parallel programming styles, describes parallel architecture, includes parallel programming frameworks and techniques, presents algorithmic and analysis techniques and discusses parallel design and performance issues. With its broad coverage, the book can be useful in a wide range of courses; and can also prove useful as a ready reckoner for professionals in the field.
Download or read book An Introduction to Distributed and Parallel Computing written by Joel M. Crichlow and published by . This book was released on 1997 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of both the hardware and software issues involved in designing state-of-the-art distributed and parallel computing systems. Essential for both students and practitioners, this book explores distributed computing from the bottom-up approach, starting with computing organization, communications and networks, and then discussing operating systems, client/server architectures, distributed databases and other applications. The book also includes coverage of parallel language design, including Occam and Linda. Each chapter ends with questions, and the book contains an extensive glossary and list of reference sources.
Download or read book Topics in Parallel and Distributed Computing written by Sushil K Prasad and published by Morgan Kaufmann. This book was released on 2015-09-16 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics in Parallel and Distributed Computing provides resources and guidance for those learning PDC as well as those teaching students new to the discipline. The pervasiveness of computing devices containing multicore CPUs and GPUs, including home and office PCs, laptops, and mobile devices, is making even common users dependent on parallel processing. Certainly, it is no longer sufficient for even basic programmers to acquire only the traditional sequential programming skills. The preceding trends point to the need for imparting a broad-based skill set in PDC technology. However, the rapid changes in computing hardware platforms and devices, languages, supporting programming environments, and research advances, poses a challenge both for newcomers and seasoned computer scientists. This edited collection has been developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts into courses throughout computer science curricula. - Contributed and developed by the leading minds in parallel computing research and instruction - Provides resources and guidance for those learning PDC as well as those teaching students new to the discipline - Succinctly addresses a range of parallel and distributed computing topics - Pedagogically designed to ensure understanding by experienced engineers and newcomers - Developed over the past several years in conjunction with the IEEE technical committee on parallel processing (TCPP), which held several workshops and discussions on learning parallel computing and integrating parallel concepts
Download or read book Introduction to Parallel Computing written by Roman Trobec and published by Springer. This book was released on 2018-09-27 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in microprocessor architecture, interconnection technology, and software development have fueled rapid growth in parallel and distributed computing. However, this development is only of practical benefit if it is accompanied by progress in the design, analysis and programming of parallel algorithms. This concise textbook provides, in one place, three mainstream parallelization approaches, Open MPP, MPI and OpenCL, for multicore computers, interconnected computers and graphical processing units. An overview of practical parallel computing and principles will enable the reader to design efficient parallel programs for solving various computational problems on state-of-the-art personal computers and computing clusters. Topics covered range from parallel algorithms, programming tools, OpenMP, MPI and OpenCL, followed by experimental measurements of parallel programs’ run-times, and by engineering analysis of obtained results for improved parallel execution performances. Many examples and exercises support the exposition.
Download or read book Introduction to Parallel Computing written by Zbigniew J. Czech and published by Cambridge University Press. This book was released on 2016 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide for students and practitioners to parallel computing models, processes, metrics, and implementation in MPI and OpenMP.
Download or read book PARALLEL AND DISTRIBUTED COMPUTING written by BASU, S. K. and published by PHI Learning Pvt. Ltd.. This book was released on 2016-01-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text is designed to present the recent advances in parallel and distributed architectures and algorithms within an integrated framework. Beginning with an introduction to the basic concepts, the book goes on discussing the basic methods of parallelism exploitation in computation through vector processing, super scalar and VLIW processing, array processing, associative processing, systolic algorithms, and dataflow computation. After introducing interconnection networks, it discusses parallel algorithms for sorting, Fourier transform, matrix algebra, and graph theory. The second part focuses on basics and selected theoretical issues of distributed processing. Architectures and algorithms have been dealt in an integrated way throughout the book. The last chapter focuses on the different paradigms and issues of high performance computing making the reading more interesting. This book is meant for the senior level undergraduate and postgraduate students of computer science and engineering, and information technology. The book is also useful for the postgraduate students of computer science and computer application. Key features • Each chapter is explained with examples (or example systems as the case may be) to make the principles/methods involved easily understandable. • Number of exercises are given at the end of each chapter for helping the reader to have better understanding of the topics covered. • A large number of journal articles are highlighted to help the students interested in studying further in this field.
Download or read book Distributed and Cloud Computing written by Kai Hwang and published by Morgan Kaufmann. This book was released on 2013-12-18 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed and Cloud Computing: From Parallel Processing to the Internet of Things offers complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing. It is the first modern, up-to-date distributed systems textbook; it explains how to create high-performance, scalable, reliable systems, exposing the design principles, architecture, and innovative applications of parallel, distributed, and cloud computing systems. Topics covered by this book include: facilitating management, debugging, migration, and disaster recovery through virtualization; clustered systems for research or ecommerce applications; designing systems as web services; and social networking systems using peer-to-peer computing. The principles of cloud computing are discussed using examples from open-source and commercial applications, along with case studies from the leading distributed computing vendors such as Amazon, Microsoft, and Google. Each chapter includes exercises and further reading, with lecture slides and more available online. This book will be ideal for students taking a distributed systems or distributed computing class, as well as for professional system designers and engineers looking for a reference to the latest distributed technologies including cloud, P2P and grid computing. - Complete coverage of modern distributed computing technology including clusters, the grid, service-oriented architecture, massively parallel processors, peer-to-peer networking, and cloud computing - Includes case studies from the leading distributed computing vendors: Amazon, Microsoft, Google, and more - Explains how to use virtualization to facilitate management, debugging, migration, and disaster recovery - Designed for undergraduate or graduate students taking a distributed systems course—each chapter includes exercises and further reading, with lecture slides and more available online
Download or read book Parallel and Distributed Computing written by Claudia Leopold and published by Wiley-Interscience. This book was released on 2001 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: An all-inclusive survey of the fundamentals of parallel and distributed computing. The use of parallel and distributed computing has increased dramatically over the past few years, giving rise to a variety of projects, implementations, and buzzwords surrounding the subject. Although the areas of parallel and distributed computing have traditionally evolved separately, these models have overlapping goals and characteristics. Parallel and Distributed Computing surveys the models and paradigms in this converging area of parallel and distributed computing and considers the diverse approaches within a common text. Covering a comprehensive set of models and paradigms, the material also skims lightly over more specific details and serves as both an introduction and a survey. Novice readers will be able to quickly grasp a balanced overview with the review of central concepts, problems, and ideas, while the more experienced researcher will appreciate the specific comparisons between models, the coherency of the parallel and distributed computing field, and the discussion of less well-known proposals. Other topics covered include: * Data parallelism * Shared-memory programming * Message passing * Client/server computing * Code mobility * Coordination, object-oriented, high-level, and abstract models * And much more Parallel and Distributed Computing is a perfect tool for students and can be used as a foundation for parallel and distributed computing courses. Application developers will find this book helpful to get an overview before choosing a particular programming style to study in depth, and researchers and programmers will appreciate the wealth of information concerning the various areas of parallel and distributed computing.
Download or read book Distributed and Parallel Systems written by Peter Kacsuk and published by Springer Science & Business Media. This book was released on 2007-05-03 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed and Parallel Systems: From Cluster to Grid Computing, is an edited volume based on DAPSYS 2006, the 6th Austrian-Hungarian Workshop on Distributed and Parallel Systems, which is dedicated to all aspects of distributed and parallel computing. The workshop was held in conjunction with the 2nd Austrian Grid Symposium in Innsbruck, Austria in September 2006. This book is designed for a professional audience composed of practitioners and researchers in industry. It is also suitable for advanced-level students in computer science.
Download or read book Introduction to Parallel Programming written by Subodh Kumar and published by Cambridge University Press. This book was released on 2022-10-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces students to the full gamut of different parallel programming styles and their relationship to hardware architecture.
Download or read book Introduction to Parallel Computing written by Theodore Gyle Lewis and published by . This book was released on 1992 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.
Download or read book Introduction to Parallel Computing written by Vipin Kumar and published by Addison Wesley Longman. This book was released on 1994 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Parallelism.
Download or read book Parallel and Distributed Computing Applications and Technologies written by Yong Zhang and published by Springer Nature. This book was released on 2021-02-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 21st International Conference on Parallel and Distributed Computing, Applications, and Technologies, PDCAT 2020, which took place in Shenzhen, China, during December 28-30, 2020. The 34 full papers included in this volume were carefully reviewed and selected from 109 submissions. They deal with parallel and distributed computing of networking and architectures, software systems and technologies, algorithms and applications, and security and privacy.
Download or read book Parallel and Distributed Computation Numerical Methods written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-03-01 with total page 832 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly acclaimed work, first published by Prentice Hall in 1989, is a comprehensive and theoretically sound treatment of parallel and distributed numerical methods. It focuses on algorithms that are naturally suited for massive parallelization, and it explores the fundamental convergence, rate of convergence, communication, and synchronization issues associated with such algorithms. This is an extensive book, which aside from its focus on parallel and distributed algorithms, contains a wealth of material on a broad variety of computation and optimization topics. It is an excellent supplement to several of our other books, including Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 1999), Dynamic Programming and Optimal Control (Athena Scientific, 2012), Neuro-Dynamic Programming (Athena Scientific, 1996), and Network Optimization (Athena Scientific, 1998). The on-line edition of the book contains a 95-page solutions manual.
Download or read book Algorithms and Parallel Computing written by Fayez Gebali and published by John Wiley & Sons. This book was released on 2011-03-29 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a software gap between the hardware potential and the performance that can be attained using today's software parallel program development tools. The tools need manual intervention by the programmer to parallelize the code. Programming a parallel computer requires closely studying the target algorithm or application, more so than in the traditional sequential programming we have all learned. The programmer must be aware of the communication and data dependencies of the algorithm or application. This book provides the techniques to explore the possible ways to program a parallel computer for a given application.
Download or read book Programming Models for Parallel Computing written by Pavan Balaji and published by MIT Press. This book was released on 2015-11-06 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the most prominent contemporary parallel processing programming models, written in a unique tutorial style. With the coming of the parallel computing era, computer scientists have turned their attention to designing programming models that are suited for high-performance parallel computing and supercomputing systems. Programming parallel systems is complicated by the fact that multiple processing units are simultaneously computing and moving data. This book offers an overview of some of the most prominent parallel programming models used in high-performance computing and supercomputing systems today. The chapters describe the programming models in a unique tutorial style rather than using the formal approach taken in the research literature. The aim is to cover a wide range of parallel programming models, enabling the reader to understand what each has to offer. The book begins with a description of the Message Passing Interface (MPI), the most common parallel programming model for distributed memory computing. It goes on to cover one-sided communication models, ranging from low-level runtime libraries (GASNet, OpenSHMEM) to high-level programming models (UPC, GA, Chapel); task-oriented programming models (Charm++, ADLB, Scioto, Swift, CnC) that allow users to describe their computation and data units as tasks so that the runtime system can manage computation and data movement as necessary; and parallel programming models intended for on-node parallelism in the context of multicore architecture or attached accelerators (OpenMP, Cilk Plus, TBB, CUDA, OpenCL). The book will be a valuable resource for graduate students, researchers, and any scientist who works with data sets and large computations. Contributors Timothy Armstrong, Michael G. Burke, Ralph Butler, Bradford L. Chamberlain, Sunita Chandrasekaran, Barbara Chapman, Jeff Daily, James Dinan, Deepak Eachempati, Ian T. Foster, William D. Gropp, Paul Hargrove, Wen-mei Hwu, Nikhil Jain, Laxmikant Kale, David Kirk, Kath Knobe, Ariram Krishnamoorthy, Jeffery A. Kuehn, Alexey Kukanov, Charles E. Leiserson, Jonathan Lifflander, Ewing Lusk, Tim Mattson, Bruce Palmer, Steven C. Pieper, Stephen W. Poole, Arch D. Robison, Frank Schlimbach, Rajeev Thakur, Abhinav Vishnu, Justin M. Wozniak, Michael Wilde, Kathy Yelick, Yili Zheng