EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB

Download or read book Introduction to Numerical Ordinary and Partial Differential Equations Using MATLAB written by Alexander Stanoyevitch and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Differential Equations and Linear Algebra

Download or read book Differential Equations and Linear Algebra written by Gilbert Strang and published by Wellesley-Cambridge Press. This book was released on 2015-02-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential equations and linear algebra are two central topics in the undergraduate mathematics curriculum. This innovative textbook allows the two subjects to be developed either separately or together, illuminating the connections between two fundamental topics, and giving increased flexibility to instructors. It can be used either as a semester-long course in differential equations, or as a one-year course in differential equations, linear algebra, and applications. Beginning with the basics of differential equations, it covers first and second order equations, graphical and numerical methods, and matrix equations. The book goes on to present the fundamentals of vector spaces, followed by eigenvalues and eigenvectors, positive definiteness, integral transform methods and applications to PDEs. The exposition illuminates the natural correspondence between solution methods for systems of equations in discrete and continuous settings. The topics draw on the physical sciences, engineering and economics, reflecting the author's distinguished career as an applied mathematician and expositor.

Book An Introduction to Partial Differential Equations with MATLAB

Download or read book An Introduction to Partial Differential Equations with MATLAB written by Matthew P. Coleman and published by CRC Press. This book was released on 2016-04-19 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Partial Differential Equations with MATLAB, Second Edition illustrates the usefulness of PDEs through numerous applications and helps students appreciate the beauty of the underlying mathematics. Updated throughout, this second edition of a bestseller shows students how PDEs can model diverse problems, including the flow of heat,

Book Linear Algebra and Differential Equations Using MATLAB

Download or read book Linear Algebra and Differential Equations Using MATLAB written by Martin Golubitsky and published by Cengage Learning. This book was released on 1999-01 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: These world-renowned authors integrate linear algebra and ordinary differential equations in this unique book, interweaving instructions on how to use MATLAB® with examples and theory. They use computers in two ways: in linear algebra, computers reduce the drudgery of calculations to help students focus on concepts and methods; in differential equations, computers display phase portraits graphically for students to focus on the qualitative information embodied in solutions, rather than just to learn to develop formulas for solutions.

Book An Introduction to Differential Equations Using MATLAB

Download or read book An Introduction to Differential Equations Using MATLAB written by Rizwan Butt and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Differential Equations using MATLAB exploits the symbolic, numerical, and graphical capabilities of MATLAB to develop a thorough understanding of differential equations algorithms.

Book Differential Equations with MATLAB

Download or read book Differential Equations with MATLAB written by Mark McKibben and published by CRC Press. This book was released on 2014-09-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique textbook for an undergraduate course on mathematical modeling, Differential Equations with MATLAB: Exploration, Applications, and Theory provides students with an understanding of the practical and theoretical aspects of mathematical models involving ordinary and partial differential equations (ODEs and PDEs). The text presents a unifying picture inherent to the study and analysis of more than 20 distinct models spanning disciplines such as physics, engineering, and finance. The first part of the book presents systems of linear ODEs. The text develops mathematical models from ten disparate fields, including pharmacokinetics, chemistry, classical mechanics, neural networks, physiology, and electrical circuits. Focusing on linear PDEs, the second part covers PDEs that arise in the mathematical modeling of phenomena in ten other areas, including heat conduction, wave propagation, fluid flow through fissured rocks, pattern formation, and financial mathematics. The authors engage students by posing questions of all types throughout, including verifying details, proving conjectures of actual results, analyzing broad strokes that occur within the development of the theory, and applying the theory to specific models. The authors’ accessible style encourages students to actively work through the material and answer these questions. In addition, the extensive use of MATLAB® GUIs allows students to discover patterns and make conjectures.

Book Introduction to Partial Differential Equations with MATLAB

Download or read book Introduction to Partial Differential Equations with MATLAB written by Jeffery M. Cooper and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. The core consists of solution methods, mainly separation of variables, for boundary value problems with constant coeffi cients in geometrically simple domains. Too often an introductory course focuses exclusively on these core problems and techniques and leaves the student with the impression that there is no more to the subject. Questions of existence, uniqueness, and well-posedness are ignored. In particular there is a lack of connection between the analytical side of the subject and the numerical side. Furthermore nonlinear problems are omitted because they are too hard to deal with analytically. Now, however, the availability of convenient, powerful computational software has made it possible to enlarge the scope of the introductory course. My goal in this text is to give the student a broader picture of the subject. In addition to the basic core subjects, I have included material on nonlinear problems and brief discussions of numerical methods. I feel that it is important for the student to see nonlinear problems and numerical methods at the beginning of the course, and not at the end when we run usually run out of time. Furthermore, numerical methods should be introduced for each equation as it is studied, not lumped together in a final chapter.

Book Solving ODEs with MATLAB

    Book Details:
  • Author : Lawrence F. Shampine
  • Publisher : Cambridge University Press
  • Release : 2003-04-28
  • ISBN : 9780521530941
  • Pages : 276 pages

Download or read book Solving ODEs with MATLAB written by Lawrence F. Shampine and published by Cambridge University Press. This book was released on 2003-04-28 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.

Book Differential Equation Solutions with MATLAB

Download or read book Differential Equation Solutions with MATLAB written by Dingyü Xue and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-04-06 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses the solutions of differential equations with MATLAB. Analytical solutions of differential equations are explored first, followed by the numerical solutions of different types of ordinary differential equations (ODEs), as well as the universal block diagram based schemes for ODEs. Boundary value ODEs, fractional-order ODEs and partial differential equations are also discussed.

Book Differential Equations

Download or read book Differential Equations written by P. Mohana Shankar and published by CRC Press. This book was released on 2018-04-17 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book takes a problem solving approach in presenting the topic of differential equations. It provides a complete narrative of differential equations showing the theoretical aspects of the problem (the how's and why's), various steps in arriving at solutions, multiple ways of obtaining solutions and comparison of solutions. A large number of comprehensive examples are provided to show depth and breadth and these are presented in a manner very similar to the instructor's class room work. The examples contain solutions from Laplace transform based approaches alongside the solutions based on eigenvalues and eigenvectors and characteristic equations. The verification of the results in examples is additionally provided using Runge-Kutta offering a holistic means to interpret and understand the solutions. Wherever necessary, phase plots are provided to support the analytical results. All the examples are worked out using MATLAB® taking advantage of the Symbolic Toolbox and LaTex for displaying equations. With the subject matter being presented through these descriptive examples, students will find it easy to grasp the concepts. A large number of exercises have been provided in each chapter to allow instructors and students to explore various aspects of differential equations.

Book An Introduction to Numerical Methods Using MATLAB

Download or read book An Introduction to Numerical Methods Using MATLAB written by K. Akbar Ansari and published by SDC Publications. This book was released on 2019 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Numerical Methods using MATLAB is designed to be used in any introductory level numerical methods course. It provides excellent coverage of numerical methods while simultaneously demonstrating the general applicability of MATLAB to problem solving. This textbook also provides a reliable source of reference material to practicing engineers, scientists, and students in other junior and senior-level courses where MATLAB can be effectively utilized as a software tool in problem solving. The principal goal of this book is to furnish the background needed to generate numerical solutions to a variety of problems. Specific applications involving root-finding, interpolation, curve-fitting, matrices, derivatives, integrals and differential equations are discussed and the broad applicability of MATLAB demonstrated. This book employs MATLAB as the software and programming environment and provides the user with powerful tools in the solution of numerical problems. Although this book is not meant to be an exhaustive treatise on MATLAB, MATLAB solutions to problems are systematically developed and included throughout the book. MATLAB files and scripts are generated, and examples showing the applicability and use of MATLAB are presented throughout the book. Wherever appropriate, the use of MATLAB functions offering shortcuts and alternatives to otherwise long and tedious numerical solutions is also demonstrated. At the end of every chapter a set of problems is included covering the material presented. A solutions manual to these exercises is available to instructors.

Book Numerical Computing with MATLAB

Download or read book Numerical Computing with MATLAB written by Cleve B. Moler and published by SIAM. This book was released on 2010-08-12 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A revised textbook for introductory courses in numerical methods, MATLAB and technical computing, which emphasises the use of mathematical software.

Book Simulation of ODE PDE Models with MATLAB    OCTAVE and SCILAB

Download or read book Simulation of ODE PDE Models with MATLAB OCTAVE and SCILAB written by Alain Vande Wouwer and published by Springer. This book was released on 2014-06-07 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB®/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book’s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.

Book Introduction to Numerical Analysis Using MATLAB

Download or read book Introduction to Numerical Analysis Using MATLAB written by Butt and published by Jones & Bartlett Learning. This book was released on 2009-02-17 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical analysis is the branch of mathematics concerned with the theoretical foundations of numerical algorithms for the solution of problems arising in scientific applications. Designed for both courses in numerical analysis and as a reference for practicing engineers and scientists, this book presents the theoretical concepts of numerical analysis and the practical justification of these methods are presented through computer examples with the latest version of MATLAB. The book addresses a variety of questions ranging from the approximation of functions and integrals to the approximate solution of algebraic, transcendental, differential and integral equations, with particular emphasis on the stability, accuracy, efficiency and reliability of numerical algorithms. The CD-ROM which accompanies the book includes source code, a numerical toolbox, executables, and simulations.

Book Computational Partial Differential Equations Using MATLAB

Download or read book Computational Partial Differential Equations Using MATLAB written by Jichun Li and published by CRC Press. This book was released on 2008-10-20 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces several major numerical methods for solving various partial differential equations (PDEs) in science and engineering, including elliptic, parabolic, and hyperbolic equations. It covers traditional techniques that include the classic finite difference method and the finite element method as well as state-of-the-art numerical

Book Finite Difference Methods for Ordinary and Partial Differential Equations

Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Book An Introduction to Computational Stochastic PDEs

Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to numerical methods and analysis of stochastic processes, random fields and stochastic differential equations, and offers graduate students and researchers powerful tools for understanding uncertainty quantification for risk analysis. Coverage includes traditional stochastic ODEs with white noise forcing, strong and weak approximation, and the multi-level Monte Carlo method. Later chapters apply the theory of random fields to the numerical solution of elliptic PDEs with correlated random data, discuss the Monte Carlo method, and introduce stochastic Galerkin finite-element methods. Finally, stochastic parabolic PDEs are developed. Assuming little previous exposure to probability and statistics, theory is developed in tandem with state-of-the-art computational methods through worked examples, exercises, theorems and proofs. The set of MATLAB® codes included (and downloadable) allows readers to perform computations themselves and solve the test problems discussed. Practical examples are drawn from finance, mathematical biology, neuroscience, fluid flow modelling and materials science.