EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Two dimensional Materials

Download or read book Two dimensional Materials written by Pramoda Kumar Nayak and published by BoD – Books on Demand. This book was released on 2016-08-31 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Book 2D Materials

    Book Details:
  • Author : Craig E. Banks
  • Publisher : CRC Press
  • Release : 2018-06-27
  • ISBN : 1351648098
  • Pages : 466 pages

Download or read book 2D Materials written by Craig E. Banks and published by CRC Press. This book was released on 2018-06-27 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most reference texts covering two-dimensional materials focus specifically on graphene, when in reality, there are a host of new two-dimensional materials poised to overtake graphene. This book provides an authoritative source of information on twodimensional materials covering a plethora of fields and subjects and outlining all two-dimensional materials in terms of their fundamental understanding, synthesis, and applications.

Book Two dimensional Materials   Synthesis  Characterization and Potential Applications

Download or read book Two dimensional Materials Synthesis Characterization and Potential Applications written by Pramoda Kumar Nayak and published by . This book was released on 2016 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.

Book 2D Functional Nanomaterials

Download or read book 2D Functional Nanomaterials written by Ganesh S. Kamble and published by John Wiley & Sons. This book was released on 2021-10-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Functional Nanomaterials Outlines the latest developments in 2D heterojunction nanomaterials with energy conversion applications In 2D Functional Nanomaterials: Synthesis, Characterization, and Applications, Dr. Ganesh S. Kamble presents an authoritative overview of the most recent progress in the rational design and synthesis of 2D nanomaterials and their applications in semiconducting catalysts, biosensors, electrolysis, batteries, and solar cells. This interdisciplinary volume is a valuable resource for materials scientists, electrical engineers, nanoscientists, and solid-state physicists looking for up-to-date information on 2D heterojunction nanomaterials. The text summarizes the scientific contributions of international experts in the fabrication and application of 2D nanomaterials while discussing the importance and impact of 2D nanomaterials on future economic growth, novel manufacturing processes, and innovative products. Provides thorough coverage of graphene chemical derivatives synthesis and applications, including state-of-the-art developments and perspectives Describes 2D/2D graphene oxide-layered double hydroxide nanocomposites for immobilization of different radionuclides Covers 2D nanomaterials for biomedical applications and novel 2D nanomaterials for next-generation photodetectors Discusses applications of 2D nanomaterials for cancer therapy and recent trends ingraphene-latex nanocomposites Perfect for materials scientists, inorganic chemists, and electronics engineers, 2D Functional Nanomaterials: Synthesis, Characterization, and Applications is also an essential resource for solid-state physicists seeking accurate information on recent progress in two-dimensional heterojunction materials with energy conversion applications.

Book 2D Materials for Electronics  Sensors and Devices

Download or read book 2D Materials for Electronics Sensors and Devices written by Saptarshi Das and published by Elsevier. This book was released on 2022-09-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Materials for Electronics, Sensors and Devices: Synthesis, Characterization, Fabrication and Application provides an overview of various top-down and bottom-up synthesis techniques, along with stitching, stacking and stoichiometric control methods for different 2D materials and their heterostructures. The book focuses on the widespread applications of various 2D materials in high-performance and low-power sensors, field effect devices, flexible electronics, straintronics, spintronics, brain-inspired electronics, energy harvesting and energy storage devices. This is an important reference for materials scientists and engineers looking to gain a greater understanding on how 2D materials are being used to create a range of low cost, sustainable products and devices. Discusses the major synthesis and preparation methods of a range of emerging 2D electronic materials Provides state-of–the-art information on the most recent advances, including theoretical and experimental studies and new applications Discusses the major challenges of the mass application of 2D materials in industry

Book Synthesis  Modelling and Characterization of 2D Materials and their Heterostructures

Download or read book Synthesis Modelling and Characterization of 2D Materials and their Heterostructures written by Eui-Hyeok Yang and published by Elsevier. This book was released on 2020-06-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials

Book Fundamentals and Supercapacitor Applications of 2D Materials

Download or read book Fundamentals and Supercapacitor Applications of 2D Materials written by Chandra Sekhar Rout and published by Elsevier. This book was released on 2021-05-10 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Applications of Supercapacitor 2D Materials covers different aspects of supercapacitor 2D materials, including their important properties, synthesis, and recent developments in supercapacitor applications of engineered 2D materials. In addition, theoretical investigations and various types of supercapacitors based on 2D materials such as symmetric, asymmetric, flexible, and micro-supercapacitors are covered. This book is a useful resource for research scientists, engineers, and students in the fields of supercapacitors, 2D nanomaterials, and energy storage devices. Due to their sub-nanometer thickness, 2D materials have a high packing density, which is suitable for the fabrication of highly-packed energy supplier/storage devices with enhanced energy and power density. The flexibility of 2D materials, and their good mechanical properties and high packing densities, make them suitable for the development of thin, flexible, and wearable devices. Explores recent developments and looks at the importance of 2D materials in energy storage technologies Presents both the theoretical and DFT related studies Discusses the impact on performance of various operating conditions Includes a brief overview of the applications of supercapacitors in various industries, including aerospace, defense, biomedical, environmental, energy, and automotive

Book Two Dimensional Carbon

Download or read book Two Dimensional Carbon written by Wu Yihong and published by CRC Press. This book was released on 2014-04-09 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for applications of 2D carbon in energy storage including supercapacitor, lithium ion battery and fuel cells.

Book 2D Nanoscale Heterostructured Materials

Download or read book 2D Nanoscale Heterostructured Materials written by Satyabrata Jit and published by Elsevier. This book was released on 2020-05-22 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2D Nanoscale Heterostructured Materials: Synthesis, Properties, and Applications assesses the current status and future prospects for 2D materials other than graphene (e.g., BN nanosheets, MoS2, NbSe2, WS2, etc.) that have already been contemplated for both low-end and high-end technological applications. The book offers an overview of the different synthesis techniques for 2D materials and their heterostructures, with a detailed explanation of the many potential future applications. It provides an informed overview and fundamentals properties related to the 2D Transition metal dichalcogenide materials and their heterostructures. The book helps researchers to understand the progress of this field and points the way to future research in this area. Explores synthesis techniques of newly evolved 2D materials and their heterostructures with controlled properties Offers detailed analysis of the fundamental properties (via various experimental process and simulations techniques) of 2D heterostructures materials Discusses the applications of 2D heterostructured materials in various high-performance devices

Book 2D Materials

Download or read book 2D Materials written by Phaedon Avouris and published by Cambridge University Press. This book was released on 2017-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.

Book Synthesis  Characterization  and Device Applications of Two dimensional Materials

Download or read book Synthesis Characterization and Device Applications of Two dimensional Materials written by Ali Mohsin and published by . This book was released on 2018 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional (2D) materials have attracted tremendous research interest, as they offer novel physics, facile visualization by electron and scanning probe microscopy, and the potential to become next-generation electronic materials, all due to reduced dimensionality. Large-area 2D single crystals are needed for both fundamental scientific experiments and electronic device applications. New methods need to be developed to exploit state-of-the-art microscopy in the scientific investigation of 2D materials. Mechanisms behind the behavior of 2D-material based devices need to be resolved and new device concepts and applications need to be explored. This dissertation addresses these three aspects of 2D materials research. Using chemical vapor deposition growth of graphene on copper as a platform, the first part of my research in this thesis demonstrates a facile method involving a simple in-situ treatment of the copper catalytic substrate right before the growth that results in mm-sized graphene single crystals, elucidating the key factors of achieving large-area 2D single crystals. The second part of this work developed experimental methods to resolve important issues in 2D materials research by employing modern transmission electron microscopy. Here, a method has been developed to determine the edge orientation and termination without imaging the edge down to the atomic scale of monolayer hexagonal boron nitride (h-BN), enabling a direct comparison to theoretical predictions. Another important issue in 2D materials research is the determination of the layer count and its lateral spatial uniformity. In this work, a method is developed to map the layer count of a 2D material at nanometer-scale lateral resolution over extended areas, utilizing a combination of mass-thickness mapping offered by STEM and element-specific quantization afforded by electron energy loss spectrum (EELS) mapping. The last part of this thesis work unravels the multiple mechanisms behind the behavior of field effect transistors (FETs) based on PdSe2. The change in device behavior in early reports from ambipolar to n channel was puzzling. As commonly encountered in device research, many factors, including channel material properties, defects, contaminants, and contact effects, are almost always entangled. Here, I use multiple control devices to unravel various mechanisms and provide consistent explanations for device behvior variations.

Book 2D Materials

    Book Details:
  • Author : Daniel Chenet
  • Publisher :
  • Release : 2016
  • ISBN :
  • Pages : pages

Download or read book 2D Materials written by Daniel Chenet and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The rediscovery - and it can only really be characterized as such since most of these materials were studied in the bulk form going back to the 1960s - of these two-dimensional materials with properties ranging from superconductivity, piezoelectricity, optical and electrical anisotropy, and large magnetoresistivity required the development of new characterization techniques to address the perturbations that accompanied the “thinning” of layers. Several characterization techniques were developed and are presented in this thesis. Moreover, in an effort to push these materials closer towards technological viability, synthesis techniques were developed that enabled the systematic study of a prototypical material system, molybdenum disulfide (MoS2), in order to address the challenges that accompany scalability and determine the structure-property-function relationship.

Book Preparation and Properties of 2D Materials

Download or read book Preparation and Properties of 2D Materials written by Byungjin Cho and published by MDPI. This book was released on 2020-12-10 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the great success of graphene, atomically thin-layered nanomaterials, called two dimensional (2D) materials, have attracted tremendous attention due to their extraordinary physical properties. Specifically, van der Waals heterostructured architectures based on a few 2D materials, named atomic-scale Lego, have been proposed as unprecedented platforms for the implementation of versatile devices with a completely novel function or extremely high-performance, shifting the research paradigm in materials science and engineering. Thus, diverse 2D materials beyond existing bulk materials have been widely studied for promising electronic, optoelectronic, mechanical, and thermoelectric applications. Especially, this Special Issue included the recent advances in the unique preparation methods such as exfoliation-based synthesis and vacuum-based deposition of diverse 2D materials and also their device applications based on interesting physical properties. Specifically, this Editorial consists of the following two parts: Preparation methods of 2D materials and Properties of 2D materials

Book Fundamentals and Sensing Applications of 2D Materials

Download or read book Fundamentals and Sensing Applications of 2D Materials written by Chandra Sekhar Rout and published by Woodhead Publishing. This book was released on 2019-06-15 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals and Sensing Applications of 2D Materials provides a comprehensive understanding of a wide range of 2D materials. Examples of fundamental topics include: defect and vacancy engineering, doping and advantages of 2D materials for sensing, 2D materials and composites for sensing, and 2D materials in biosystems. A wide range of applications are addressed, such as gas sensors based on 2D materials, electrochemical glucose sensors, biosensors (enzymatic and non-enzymatic), and printed, stretchable, wearable and flexible biosensors. Due to their sub-nanometer thickness, 2D materials have a high packing density, thus making them suitable for the fabrication of thin film based sensor devices. Benefiting from their unique physical and chemical properties (e.g. strong mechanical strength, high surface area, unparalleled thermal conductivity, remarkable biocompatibility and ease of functionalization), 2D layered nanomaterials have shown great potential in designing high performance sensor devices. Provides a comprehensive overview of 2D materials systems that are relevant to sensing, including transition metal dichalcogenides, metal oxides, graphene and other 2D materials system Includes information on potential applications, such as flexible sensors, biosensors, optical sensors, electrochemical sensors, and more Discusses graphene in terms of the lessons learned from this material for sensing applications and how these lessons can be applied to other 2D materials

Book Two dimensional Materials Synthesis  Characterization  and Devices

Download or read book Two dimensional Materials Synthesis Characterization and Devices written by Harry Chou and published by . This book was released on 2018 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two dimensional materials have unique properties that are anisotropic in-plane and out-of-plane. They further exhibit unique properties when they are thinned down to an isolated monolayer or a few layers. These properties have the potential to greatly impact applications in energy, computing, construction, medicine, and other industries. Many researchers have published many reports working with two dimensional (2D) materials. This dissertation describes work which has contributed to the body of research around 2D materials synthesis, characterization, and device applications primarily with graphene and hexagonal boron nitride. Graphene is a hexagonal lattice of carbon atoms which is stable in ambient down to a single monolayer. Hexagonal boron nitride is an isomorph of graphene but with boron and nitrogen atoms on the lattice instead of carbon. Chemical vapor deposition (CVD) synthesis processes have shown to be replicable and capable for obtaining 2D materials of high quality, and experimenting with process conditions has improved the understanding about the synthesis mechanisms occurring. The objective of my 2D materials synthesis work is, broadly, to better understand the mechanisms during growth for graphene and h-BN. The growth mechanism has multiple of forces acting on it, in competition, and many of them are detailed in chapter 2. Growing the body of research and knowledge about 2D materials requires us to have techniques to characterize these materials accurately and precisely. It is important to develop and demonstrate new characterization techniques which are tailored for 2D materials. In chapter 3, the research done in characterizing 2D materials and interfaces between hetero-layers will be presented. Devices which take advantage of the dimensionality and confinement within a layer of 2D material, or multiple materials, have shown high performance in a variety of applications. The range for 2D materials device applications is continually expanding and increasing in complexity. In chapter 4, research will be presented which returns to the relatively simple system of graphene to try and apply its many unique properties for a few different photovoltaic devices

Book Two Dimensional Materials Based Membranes

Download or read book Two Dimensional Materials Based Membranes written by Gongping Liu and published by John Wiley & Sons. This book was released on 2022-08-08 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-Dimensional-Materials-Based Membranes An authoritative and up to date discussion of two-dimensional materials and membranes In Two-Dimensional-Materials-Based Membranes: Preparation, Characterization, and Applications, a team of distinguished chemical engineers delivers a comprehensive exploration of the latest advances in design principles, synthesis approaches, and applications of two-dimensional (2D) materials—like graphene, metal-organic frameworks (MOFs), 2D layered double hydroxides, and MXene—and highlights the significance and development of these membranes. In the book, the authors discuss the use of membranes to achieve high-efficiency separation and to address the challenges posed in the field. The book also discusses potential challenges and benefits in the future development of advanced 2D nanostructures, as well as their impending implementation in applications in the fields of energy, sustainability, catalysis, electronics, and biotechnology. Readers will also find: A thorough introduction to fabrication methods for 2D-materials-based membranes, including the synthesis of nanosheets, membrane structures, and fabrication methods Descriptions of three types of 2D-materials-based membranes: single-layer membranes, laminar membranes and mixed-matrix membranes Comprehensive discussions of 2D-materials-based membranes for water and ions separation, solvent-water separation and gas separation Explorations of transport mechanism of 2D-materials-based membranes for molecular separations Perfect for membrane scientists, inorganic chemists, and materials scientists, Two-Dimensional-Materials-Based Membranes will also earn a place in the libraries of chemical and process engineers in industrial environments.