EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Integrated Optimization Tool with Applications in Mining Using a Discrete Rate Stochastic Model

Download or read book An Integrated Optimization Tool with Applications in Mining Using a Discrete Rate Stochastic Model written by Asim Khan and published by . This book was released on 2011 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: The simulation as a stand alone optimization tool of a complex system such as a vertical integrated mining operation, significantly over simplifies the actual picture of the system processes involved resulting in an unaccountable effort and resources being spent on optimizing Non Value Added (NA) processes. This study purposed to develop a discrete stochastic simulation-optimization model to accurately capture the dynamics of the system and to provide a structured way to optimize the Value Added (VA) processes. The mine operation model to be simulated for this study is designed as a hybrid level throughput model to identify the VA processes in a mining operation. This study also allows a better understanding of the impact of variation on the likelihood of achieving any given overall result. The proposed discrete stochastic simulation- optimization model provides the ability for a process manager to gain realistic understanding of what a process can do if some factors constraining the process were to be optimized i.e. to conduct what-if analysis. Another benefit of this approached technique is to be able to estimate dependable and reasonable returns on a large optimization related expenditure. The inputs into the model are the capability of the processes which are entered using various variables depending on how much information is available; simple inputs for least amount of information to detailed inputs for well known process to combinational inputs for somewhere in between. The process bottlenecks are identified and measured using the outputs of the model which include production output, severity of constraints, capacity constraints and cumulative bottleneck plots. Once a base case has been identified and documented then the inputs can be modified to represent the business initiatives and the outputs can be compared to the base case to evaluate the true value of the initiative.

Book Ore Reserve Estimation and Strategic Mine Planning

Download or read book Ore Reserve Estimation and Strategic Mine Planning written by Roussos Dimitrakopoulos and published by Springer. This book was released on 2015-11-15 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mining business faces continual risks in producing metals and raw materials under fluctuating market demand. At the same time, the greatest uncertainty driving the risk and profitability of mining investments is the geological variability of mineral deposits. This supply uncertainty affects the prediction of economic value from the initial valuation of a mining project through mine planning, design and production scheduling. This book is the first of its kind, presenting state-of-the-art stochastic simulation and optimization techniques and step-by-step case studies. Quantification of geological uncertainty through new efficient conditional simulation techniques for large deposits, integration of uncertainty to stochastic optimization formulations for design and production scheduling and the concurrent management of risk are shown to create flexibility, options and oportunities, increase asset value, cashflows and return on investment. New approaches introduced include resource/reserve risk quantification, cost-effective drilling programs, pit design and long-term production scheduling optimization with simulated orebodies, ore reserve classification, geologic risk discounting, waste managing and demand driven scheduling, risk assessment in meeting project production schedules ahead of mining, risk based optimal stope design, options valuation when mining. Applications include commodities such as gold, copper, nickel, iron ore, coal and diamonds.

Book An Application of Simultaneous Stochastic Optimization in Mining Complexes and Integrating Mine to port Transportation

Download or read book An Application of Simultaneous Stochastic Optimization in Mining Complexes and Integrating Mine to port Transportation written by Mélanie LaRoche-Boisvert and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "A mineral value chain or mining complex is an integrated system representing all components of a mining operation for the extraction, transportation and transformation of material, from sources (open pit and underground mines) to customers or the spot market. Simultaneous stochastic optimization aims to optimize all components of a mineral value chain, including extraction schedules for the mines, stockpile management, processing and transportation scheduling, jointly to capitalize on the synergies that exist within the system. Additionally, the simultaneous stochastic optimization approach incorporates material supply or geological uncertainty using equally probable geostatistical (stochastic) simulations of the attributes of interest of the deposits. The incorporation of material supply uncertainty allows the approach to manage the related major technical risks.The first contribution of this thesis is the application of simultaneous stochastic optimization at a three-mine open pit gold mining complex, incorporating material supply uncertainty using stochastic simulations of the gold grades of each deposit. The case study maximizes the net present value of the operation by generating life-of-mine schedules for each deposit considered and stockpile management plans, which maximize gold production and minimize the associated costs. The study also assesses the impacts of material hardness on the processing facilities, notably the SAG mill, and the recovered gold. This assessment indicates that the SAG mill is the bottleneck of the operation; due to the lack of availability of soft material in the considered deposits, the throughput of material at the SAG mill is significantly lowered. The second contribution of this thesis is a new stochastic mathematical programming formulation jointly optimizing long-term extraction scheduling and mine-to-port transportation scheduling for mining complexes under supply uncertainty. Mine-to-port transportation systems represent an important component of certain mining complexes, such as iron ore mining complexes, ensuring that extracted products reach their intended clients. This component of the mineral value chain has not been included in previous simultaneous stochastic optimization formulations, ignoring the interactions between the transportation system and the other components of the mining complex. The proposed model simultaneously optimizes extraction scheduling, stockpile management, mine-to-port transportation scheduling and blending under material supply uncertainty. It aims to minimize the costs associated with meeting quantity and quality demand for the products at the port, managing the risks associated with the material supply uncertainty using stochastic simulations of grades. The model is applied to an iron ore mining complex consisting of two open pit mines, each with a waste dump, a stockpile and a loading area, connected to a single port by a railway system. Material is transported by two trains. At the port, demand for two products are considered, each with quality constraints relating to five elements. Stochastic simulations of the five elements considered are used to represent the material supply uncertainty. By optimizing the extraction and the mine-to-port transportation jointly, the case study is able to determine that only the first train is necessary to transport material to meet demand at the port for the first three years of mine life; for the remainder, the second train is also needed. As such, the second train could be allocated to another operation for better use during the first three years of operation or its purchase could be delayed. The model provides decision makers with a realistic use of the mine-to-port transportation system"--

Book Exploring Stochastic Optimization in Open Pit Mine Design

Download or read book Exploring Stochastic Optimization in Open Pit Mine Design written by Francisco Rosendo Albor Consuegra and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An Integrated Simulation and Optimization Tool for Short Term Mining Planning Problems With Different Prioritizations Among Competing Plant Targets

Download or read book An Integrated Simulation and Optimization Tool for Short Term Mining Planning Problems With Different Prioritizations Among Competing Plant Targets written by Aldrin Gustavo Martins and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work proposes a tool that integrates a hierarchical mixed-integer linear programming (MILP) model with a discrete event simulation (DES) model to simulate an annual mining plan discretized in shift-by-shift periods. The hierarchical MILP model has ten objectives and optimizes the shift schedule according to the available materials in the free faces at each simulation moment. The DES model simulates the realization of this schedule considering the uncertainties and interactions between the mine's equipment. Five scenarios from a Brazilian mining company were analyzed. These differ regarding the prioritization order of the MILP goals and the plants' grade tolerance. The results report the trade-off between the prioritization levels of targets to meet the particle size range and iron grades in the plants.

Book A Study of Simultaneous Stochastic Optimization of Open Pit Mining Complexes

Download or read book A Study of Simultaneous Stochastic Optimization of Open Pit Mining Complexes written by Ziad Saliba and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Over the last several years advances in the field of mine planning have led to the development of cutting-edge simultaneous stochastic optimization frameworks for mining complexes. The latest methods consider mining operations as a resource-to-market integrated mineral value that transforms raw in-situ materials into sellable products, a mining complex. Simultaneous stochastic optimization frameworks make use of a paradigm shift that considers the value of the sellable products, as opposed to economic block values, to drive the optimization process and capitalize on the synergies between the central, interrelated components of a mining complex. These methods maximize the value of mining operations and manage technical risk by incorporating uncertainty directly into unified optimization formulations. This thesis studies the simultaneous stochastic optimization framework through two real-world case studies, applying the methods and assessing their characteristics and limitations. The second chapter of this thesis presents an application of a stochastic framework that simultaneously optimizes mining, destination and processing decisions for a multi-pit, multi-processor gold mining complex with challenging geochemical processing constraints. The framework accounts for supply and market uncertainty via stochastic orebody and commodity price simulations as inputs to a unified optimization model. The case study notably assesses the impacts of integrating market uncertainty as input that influences all components of the production schedule. Additionally, cut-off grade decisions are determined by the simultaneous optimization process, considering material variability and operating constraints while reducing the number of a-priori decisions to be made. This approach generates solutions that capitalize on the synergies between extraction sequencing, cut-off grade optimization, blending and processing while managing and quantifying risk in strategic plans. Which ultimately leads to more metal production and higher NPVs than traditional methods. The third chapter applies an extension of the generalized simultaneous stochastic optimization formulation that considers capital expenditure (CapEx) options as part of the life-of-asset planning process. Enabling the case study to consider environmental issues relating to tailings management and model a tailings facility expansion. The application at a multi-element open pit mining complex simultaneously optimizes the extraction sequence, cut-off grades, and downstream decisions from two open-pits with a set of stockpiling options, an autoclave and a tailings storage facility. The project bottleneck is the tailings facility volume because it stores both process tails, and potentially acid-generating waste rock from the mines. Results show that, when given the option, the optimizer chooses to make a significant CapEx investment to expand the tailings storage facility 25% by volume. This expansion allows for a meaningful expansion of both pit limits, 40% by mass, resulting in an extended metal production and revenue generation horizon that yields 14% more gold ounces and a 4% improvement in NPV for the mining complex. The framework provides decision makers with a realistic evaluation of the investment's impact on the mining complex." --

Book Stochastic Optimization of Stope Design and Long term Underground Mining Production Scheduling for Sublevel Open Stoping Mining Operations

Download or read book Stochastic Optimization of Stope Design and Long term Underground Mining Production Scheduling for Sublevel Open Stoping Mining Operations written by Matheus Furtado E. Faria and published by . This book was released on 2022 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Underground mine planning defines the design of technically producible economic material volumes and development openings, the sequence of multiple underground activities, and the material destinations within a mineral deposit throughout the mine's life, aiming to maximize the net present value (NPV). Due to the existence of different mining methods and the inherent operational and computational complexities, this planning is commonly performed through a stepwise optimization process in which the stope layout is preliminarily designed. Subsequently, the network of developments interconnecting the production areas is conceived, defining the precedence of underground mining activities. Finally, the strategic underground mine production scheduling is optimized, the only step that accounts for the time value of money. Available optimization methods have been focused separately on each of the planning steps, which do not benefit from the synergies between the planning steps. Additionally, most of the previously mentioned methods are deterministic; that is, they neglect many sources of uncertainty, which has been extensively demonstrated to have a significant impact on the profitability and feasibility of mining operations. Therefore, this thesis proposes stochastic optimization methods for underground mines by employing a sublevel open stoping mining method and ultimately attempts to integrate the mine design and production scheduling into a single optimization framework. The first part of this thesis presents a stochastic optimization method of stope design along with the commonly used sequential underground mine planning framework. A set of geostatistical simulations is used to quantify the variability and uncertainty of grades within the mineral deposit. The proposed method aims to maximize the undiscounted profit while capitalizing on the upside potential in terms of recoverable metal of the generated stope layout. It also accounts for the development costs of potential production levels and stopes. The application of this stochastic approach at an underground gold mine achieved a 40% higher undiscounted profit and 21% recoverable metal when benchmarked against an industry-standard deterministic stope design software tool. The second part of this thesis presents an integrated stochastic optimization of stope design and long-term underground mine production scheduling by integrating time-dependent development costs and production targets. The mathematical model seeks to maximize the NPV from the scheduled stopes, as well as to minimize the shaft, drifts and crosscuts development costs and maintenance costs to keep the levels in operation while managing the risk of failing to meet yearly productions targets. Therefore, an optimal underground mine design is yielded as an output from the optimized production schedule. The method also opens new avenues to account for time-dependent sources of uncertainty that cannot be incorporated into the stope design optimization in the sequential underground mine planning framework. A case study at an underground gold mine demonstrates that the proposed method generates more selective stopes and physically different production levels, which correspond to an 11% higher NPV and a shorter life-of-mine by two years, as compared to the sequential optimization framework"--

Book Unifed Modelling and Simultaneous Optimization of Open Pit Mining Complexes with Supply Uncertainty

Download or read book Unifed Modelling and Simultaneous Optimization of Open Pit Mining Complexes with Supply Uncertainty written by Ryan Goodfellow and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "A mining complex is an integrated business that extracts materials from open pit or underground mines, treats extracted materials via a series of processing facilities that are interconnected by various material handling methods, and generates a set of products that are sold and delivered to customers and/or the spot market. The primary objective when optimizing a mining complex is to maximize its value for the business and its stakeholders while obeying the technical constraints that limit production. This optimization is traditionally performed by treating the various components independently, leading to the suboptimal use of the natural resources and financial capital, and the underperformance of the mining complex. The global optimization of mining complexes aims to simultaneously optimize the mine production schedules, which define the distribution of materials over time, the destination policies, which define where extracted materials are sent, and the use of the various processing streams for processing, distribution and product marketing. As the size of the mining complex grows, there is a compounded effect that uncertainty has on the components, and new stochastic optimization methods are needed to manage this risk. This thesis aims to generate a unified modelling and global optimization methodology that integrates supply uncertainty and manages risk in the design and operation of mining complexes, and can be adapted to suit the needs and objectives of individual operations.This work advances the related field of knowledge through the development of new models and methods for optimizing mining complexes with uncertainty, which is achieved through five major contributions. First, a stochastic global optimization method is developed to simultaneously optimize multi-mine production schedules, destination policies, processing streams and capital expenditures for capacity design; while existing state-of-the-art methods may address some of these aspects, they have not been previously integrated in a simultaneous optimization model that does not rely on divvying up the global model into sub-problems. Second, a new, unified modelling approach is developed that permits the proposed methods to be tested on many different types of mining complexes with a high degree of modelling detail; as a result of this unified approach, non-linear relationships can easily be integrated in the optimization models - a limitation of existing deterministic and stochastic methods. Third, and a result of the previous development, a new approach is developed to model the economic value of the products sold, rather than the materials mined. Existing models and methods are limited by the assumption that each block has an economic value, hence the optimal processing stream is known a priori, and the block is treated and sold in isolation from other blocks; in some cases, this may lead to substantially undervaluing the resource. Using the new modelling approach, it is possible to evaluate the economic potential of products at the point of sale, rather than making these unrealistic assumptions at the block-level. Fourth, computationally efficient solvers are adapted and applied using metaheuristics. A combination of particle swarm optimization and a modified simulated annealing algorithm are developed to optimize various aspects of the global optimization problem; these methods have not been previously combined for mine optimization, and requires devising new methods to change designs and ensure that the optimizers do not get trapped in local optima. Finally, the performance, advantages and limitations of the models and methods are analyzed through full-field testing on real-world and large-scale examples. The results consistently reinforce the concept that it is possible to not only reduce the risk of not meeting production targets, thus guaranteeing financial forecasts are met, but also increase the net present value of the operation." --

Book Mine Plan Optimisation

Download or read book Mine Plan Optimisation written by Martin L. Smith and published by CRC Press. This book was released on 2015-12-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a range of tools for optimization in the mineral industry, including examples with mathematical programming. Topics covered include a survey of the application of optimisation technologies; a review of optimisation algorithms with math programming, math modelling and an introduction to AMPL (a widely used math modelling language), applications of linear programming to business improvement studies, surface mining applications, underground mining applications and options analysis. The math programming and AMPL is supported by the www.ampl.coma and by the author’s site, www.minesmith.com.au. This volume is intended for course use and was developed for 3rd and 4th year university education in mine planning and design or mine optimisation. Engineers, planners and policy makers in the minerals industry may find it beneficial for their professional activities as well.

Book Stochastic Dynamic Optimization of Cut off Grade in Open Pit Mines

Download or read book Stochastic Dynamic Optimization of Cut off Grade in Open Pit Mines written by Drew Barr and published by . This book was released on 2012 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mining operations exploit mineral deposits, processing a portion of the extracted material to produce salable products. The concentration of valuable commodities within these deposits, or the grade, is heterogeneous. Not all material has sufficiently high grades to economically justify processing. Cut-off grade is the lowest grade at which material is considered ore and is processed to create a concentrated commodity product. The choice of cut-off grade at a mining project can be varied over time and dramatically impacts both the operation of the mine and the economics of the project. The majority of literature and the accepted industry practices focus on optimizing cut-off grade under known commodity prices. However, most mining operations sell their products into highly competitive global markets, which exhibit volatile commodity prices. Making planning decisions assuming that a given commodity price prediction is accurate can lead to sub-optimal cut-off grade strategies and inaccurate valuations. Some academic investigations have been conducted to optimize cut-off grade under stochastic or uncertain price conditions. These works made large simplifications in order to facilitate the computation of a solution. These simplifications mean that detailed mine planning data cannot be used and the complexities involved in many real world projects cannot be considered. A new method for optimizing cut-off grade under stochastic or uncertain prices is outlined and demonstrated. The model presented makes use of theory from the field of Real Options and is designed to incorporate real mine planning data. The model introduces two key innovations. The first is the method in which it handles the cut-off grade determination. The second innovation is the use of a stochastic price model of the entire futures curve and not simply a stocastic spot price model. The model is applied to two cases. The first uses public data from a National Instrument 43-101 report. The second case uses highly detailed, confidential data, provided by a mining company from one of their operating mines.

Book Simultaneous Short term Decision making in Mining Complexes Integrating Geometallurgy Assisted by Production Data

Download or read book Simultaneous Short term Decision making in Mining Complexes Integrating Geometallurgy Assisted by Production Data written by Christian Both and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A mining complex is an integrated business of mines and downstream facilities that extracts raw materials, converts extracted materials into sellable products, and transports products to markets and customers. Conventionally, individual components of a mining complex are optimized independently of each other, which causes underperformance of the mineral value chain. Simultaneous stochastic optimization of mining complexes has shown to create strategic mine plans that increase the net present value while reducing risk of meeting production targets by incorporating geological and price uncertainty. While these developments jointly optimize strategic decisions of a mining complex, short-term planning makes weekly to monthly decisions to best meet long-term production targets and maximize value. These decisions include short-term extraction sequence, destination of materials, and downstream material flow in mining complexes. Furthermore, the optimal allocation of the mining fleet is an important aspect of short-term planning; however, the joint stochastic optimization of short-term production schedules and fleet management in mining complexes has not yet been developed. Additionally, geometallurgical properties that drive revenues, costs, and the ability to meet production targets, are not integrated in the optimization of short-term production schedules in mining complexes. This thesis expands the simultaneous stochastic optimization of mining complexes for long-term planning into a decision-making framework for short-term mine planning through the incorporation of fleet management and geometallurgical prediction models of plant performances into the short-term optimization of mining complexes, which is assisted by the utilization of collected datasets from production processes in mines and processing plants. First, a new stochastic integer programming model for short-term planning is developed that extends the simultaneous stochastic optimization of mining complexes to allow the scheduling of a heterogeneous truck fleet and shovel allocations while considering the costs and loss of production caused by shovel relocation. Next to geological uncertainty, equipment performance uncertainties related to production rates, availabilities, and truck cycle times are integrated. Next, a geometallurgical model for the prediction of ball mill throughput in mining complexes is developed which utilizes drilling penetration rates and recorded throughput rates of the operating plant. The creation of hardness proportions avoids biases introduced by the change of support and blending of non-additive geometallurgical properties. By integrating the throughput prediction model into the simultaneous stochastic optimization formulation, planned production can be achieved reliably because scheduled materials match with the predicted mill performance. The throughput prediction model is extended thereafter by including recorded measurements of ball mill power draw and particle size distributions. Since the addition of new features increases the possibilities of non-linearities, a neural network is used. The prediction of metallurgical responses of the operating plant and their incorporation into short-term stochastic production scheduling is finally extended by creating prediction models of consumption rates of reagents and consumables in a gold mining complex. With the new developments presented in this thesis, the simultaneous stochastic optimization of mining complexes can now be applied for short-term planning, modelling the operational aspects of the mining fleet and metallurgical behaviour of processing plants in greater detail. The integration of these short-term aspects leads to short-term mine plans that are more likely to align with long-term production targets while benefitting from synergistic effects that maximize the profit of the mineral value chain"--

Book Stochastic Optimization Approaches to Open Pit Mine Planning

Download or read book Stochastic Optimization Approaches to Open Pit Mine Planning written by Andre Nascimento Leite and published by . This book was released on 2008 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied mechanics reviews

Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Statistical Analysis and Data Mining Applications

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. Includes input by practitioners for practitioners Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models Contains practical advice from successful real-world implementations Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Book Applications of Optimization with Xpress MP

Download or read book Applications of Optimization with Xpress MP written by Christelle Guéret and published by Twayne Publishers. This book was released on 2002 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Applied Strategic Mine Planning

Download or read book Advances in Applied Strategic Mine Planning written by Roussos Dimitrakopoulos and published by Springer. This book was released on 2018-01-17 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of papers on topics in the field of strategic mine planning, including orebody modeling, mine-planning optimization and the optimization of mining complexes. Elaborating on the state of the art in the field, it describes the latest technologies and related research as well as the applications of a range of related technologies in diverse industrial contexts.

Book New Trends in Software Methodologies  Tools and Techniques

Download or read book New Trends in Software Methodologies Tools and Techniques written by A. Selamat and published by IOS Press. This book was released on 2014-08-29 with total page 1128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Software is the essential enabling means for science and the new economy. It helps us to create a more reliable, flexible and robust society. But software often falls short of our expectations. Current methodologies, tools, and techniques remain expensive and are not yet sufficiently reliable, while many promising approaches have proved to be no more than case-by-case oriented methods. This book contains extensively reviewed papers from the thirteenth International Conference on New Trends in software Methodology, Tools and Techniques (SoMeT_14), held in Langkawi, Malaysia, in September 2014. The conference provides an opportunity for scholars from the international research community to discuss and share research experiences of new software methodologies and techniques, and the contributions presented here address issues ranging from research practices and techniques and methodologies to proposing and reporting solutions for global world business. The emphasis has been on human-centric software methodologies, end-user development techniques and emotional reasoning, for an optimally harmonized performance between the design tool and the user. Topics covered include the handling of cognitive issues in software development to adapt it to the user's mental state and intelligent software design in software utilizing new aspects on conceptual ontology and semantics reflected on knowledge base system models. This book provides an opportunity for the software science community to show where we are today and where the future may take us.