EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Experimental Study of Turbine Vane Heat Transfer with Water air Cooling

Download or read book An Experimental Study of Turbine Vane Heat Transfer with Water air Cooling written by Nirm V. Nirmalan and published by . This book was released on 1996 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress & Exhibition, Birmingham, UK, Jun 10-13, 1996.

Book Measurements of Heat Transfer  Flow  and Pressures in a Simulated Turbine Blade Internal Cooling Passage

Download or read book Measurements of Heat Transfer Flow and Pressures in a Simulated Turbine Blade Internal Cooling Passage written by Louis M. Russell and published by . This book was released on 1997 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: An experimental study was made to obtain quantitative information on heat transfer, flow, and pressure distribution in a branched duct test section that had several significant features of an internal cooling passage of a turbine blade. The objective of this study was to generate a set of experimental data that could be used for validation of computer codes that would be used to model internal cooling. Surface heat transfer coefficients and entrance flow conditions were measured at nominal entrance Reynolds numbers of 45 000, 335 000, and 726 000. Heat transfer data were obtained by using a steady-state technique in which an Inconel heater sheet is attached to the surface and coated with liquid crystals. Visual and quantitative flow-field data from particle image velocimetry measurements for a plane at midchannel height for a Reynolds number of 45 000 were also obtained. The flow was seeded with polystyrene particles and illuminated by a laser light sheet. Pressure distribution measurements were made both on the surface with discrete holes and in the flow field with a total pressure probe. The flow-field measurements yielded flow-field velocities at selected locations. A relatively new method, pressure sensitive paint, was also used to measure surface pressure distribution. The pressure paint data obtained at Reynolds numbers of 335 000 and 726 000 compared well with the more standard method of measuring pressures by using discrete holes.

Book Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

Download or read book Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels written by and published by . This book was released on 2015 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in modern turbine engines; and What advancements in film cooling hole geometry and design can increase effectiveness of film cooling in turbines burning high-hydrogen coal syngas due to the higher heat loads and mass flow rates of the core flow? Experimental and numerical investigations of advanced cooling geometries that can improve resistance to surface deposition were performed. The answers to these questions were investigated through experimental measurements of turbine blade surface temperature and coolant coverage (via infrared camera images and thermocouples) and time-varying surface roughness in the NETL high-pressure combustion rig with accelerated, simulated surface deposition and advanced cooling hole concepts, coupled with detailed materials analysis and characterization using conventional methods of Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), 3-D Surface Topography (using a 3-D stylus profilometer). Detailed surface temperatures and cooling effectiveness could not be measured due to issues with the NETL infrared camera system. In collaboration with faculty startup funding from the principal investigator, experimental and numerical investigations were performed of an advanced film cooling hole geometry, the anti-vortex hole (AVH), focusing on improving cooling effectiveness and decreasing the counter-rotating vortex of conventional cooling holes which can entrain mainstream particulate matter to the surface. The potential benefit of this program is in gaining a fundamental understanding of how the use of alternative fuels will effect the operation of modern gas turbine engines, providing valuable data for more effective cooling designs for future turbine systems utilizing alternative fuels.

Book An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles

Download or read book An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles written by K. Takeishi and published by . This book was released on 1989 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The effects of the three-dimensional flow field on the heat transfer and the film cooling on the endwall, suction, and pressure surface of an airfoil were studied using a low speed, fully annular, low aspect h/c = 0.5 vane cascade. The predominant effects on the horseshoe vortex, secondary flow, and nozzle wake of increases in the heat transfer and decreases in the film cooling on the suction vane surface and the endwall were clearly demonstrated. In addition, it was demonstrated that secondary flow has little effect on the pressure surface. Pertinent flow visualization of the flow passage was also carried out for better understanding of these complex phenomena. Heat transfer and film cooling on the fully annular vane passage surface are discussed.

Book Heat Transfer in Gas Turbines

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Book Gas Turbine Handbook

Download or read book Gas Turbine Handbook written by Tony Giampaolo and published by CRC Press. This book was released on 2020-11-26 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: Newly revised, this new fifth edition includes a chapter on waste heat recovery and discusses this technology in detail including a the advantages and barriers to waste heat recovery, environmental restraints, thermodynamics of heat recovery, fluid properties, boiler, condensers, steam turbines, off design behavior and exhaust catalyst. This book shows how microturbine designs rely heavily on the centrifugal compressor and are, in many aspects, similar to the early flight engines and will illustrate how the approach of the microturbine designer is to minimize cost.

Book The Gas Turbine Handbook

Download or read book The Gas Turbine Handbook written by Tony Giampaolo and published by The Fairmont Press, Inc.. This book was released on 2003 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a bestseller, this comprehensive reference provides the fundamental information required to understand both the operation and proper application of all types of gas turbines. The completely updated second edition adds a new section on use of inlet cooling for power augmentation and NOx control. It explores the full spectrum of gas turbines hardware, typical application scenarios, and operating parameters, controls, inlet treatments, inspection, trouble-shooting, and more. The author discusses strategies that can help readers avoid problems before they occur and provides tips that enable diagnosis of problems in their early stages and analysis of failures to prevent their recurrence.

Book Integrated Gasification Combined Cycle  IGCC  Technologies

Download or read book Integrated Gasification Combined Cycle IGCC Technologies written by Ting Wang and published by Woodhead Publishing. This book was released on 2016-11-26 with total page 929 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrated Gasification Combined Cycle (IGCC) Technologies discusses this innovative power generation technology that combines modern coal gasification technology with both gas turbine and steam turbine power generation, an important emerging technology which has the potential to significantly improve the efficiencies and emissions of coal power plants. The advantages of this technology over conventional pulverized coal power plants include fuel flexibility, greater efficiencies, and very low pollutant emissions. The book reviews the current status and future developments of key technologies involved in IGCC plants and how they can be integrated to maximize efficiency and reduce the cost of electricity generation in a carbon-constrained world. The first part of this book introduces the principles of IGCC systems and the fuel types for use in IGCC systems. The second part covers syngas production within IGCC systems. The third part looks at syngas cleaning, the separation of CO2 and hydrogen enrichment, with final sections describing the gas turbine combined cycle and presenting several case studies of existing IGCC plants. Provides an in-depth, multi-contributor overview of integrated gasification combined cycle technologies Reviews the current status and future developments of key technologies involved in IGCC plants Provides several case studies of existing IGCC plants around the world

Book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer

Download or read book The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-23 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils. Hylton, L. D. and Nirmalan, V. and Sultanian, B. K. and Kaufman, R. M. Unspecified Center EQUIPMENT SPECIFICATIONS; FILM COOLING; HEAT TRANSFER; LEADING EDGES; STRUCTURAL DESIGN; VANES; AIRCRAFT ENGINES; CASCADE FLOW; DATA PROCESSING; GAS TURBINES; HIGH TEMPERATURE; PARAMETERIZATION; TWO DIMENSIONAL FLOW...

Book Experimental and numerical investigation of heat transfer on a cooled turbine vane  ASME 98 GT 212

Download or read book Experimental and numerical investigation of heat transfer on a cooled turbine vane ASME 98 GT 212 written by Frank G. Rubensdorffer and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, Sweden, June 2 - June 5, 1998.