EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book An Assessment of U S  Based Electron Ion Collider Science

Download or read book An Assessment of U S Based Electron Ion Collider Science written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-10-13 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding of protons and neutrons, or "nucleons"â€"the building blocks of atomic nucleiâ€"has advanced dramatically, both theoretically and experimentally, in the past half century. A central goal of modern nuclear physics is to understand the structure of the proton and neutron directly from the dynamics of their quarks and gluons governed by the theory of their interactions, quantum chromodynamics (QCD), and how nuclear interactions between protons and neutrons emerge from these dynamics. With deeper understanding of the quark-gluon structure of matter, scientists are poised to reach a deeper picture of these building blocks, and atomic nuclei themselves, as collective many-body systems with new emergent behavior. The development of a U.S. domestic electron-ion collider (EIC) facility has the potential to answer questions that are central to completing an understanding of atoms and integral to the agenda of nuclear physics today. This study assesses the merits and significance of the science that could be addressed by an EIC, and its importance to nuclear physics in particular and to the physical sciences in general. It evaluates the significance of the science that would be enabled by the construction of an EIC, its benefits to U.S. leadership in nuclear physics, and the benefits to other fields of science of a U.S.-based EIC.

Book Physics Opportunity with an Electron Ion Collider

Download or read book Physics Opportunity with an Electron Ion Collider written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the emergence of nucleons and nuclei and their interactions from the properties and dynamics of quarks and gluons in Quantum Chromodynamics (QCD) is a fundamental and compelling goal of nuclear science. A high-energy, high-luminosity polarized electron-ion collider (EIC) will be needed to explore and advance many aspects of QCD studies in the gluon dominated regions in nucleon and nuclei. The federal Nuclear Science Advisory Committee unanimously approved a high-energy electro-ion collider to explore a new frontier in physics research. In fact, the committee calls the collider the country's next "highest priority" in new facility construction, and is one of four main recommendations contained in its 2015 Long Range Plan for Nuclear Science. Two proposals for the EIC are being considered in the U.S.: one each at Jefferson Laboratory (JLab) and at Brookhaven National Laboratory (BNL). An overview of the physics opportunities an EIC presents to the nuclear science community in future decades is presented.

Book Electron Ion Collider

Download or read book Electron Ion Collider written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This White Paper presents the science case of an Electron-Ion Collider (EIC), focused on the structure and interactions of gluon-dominated matter, with the intent to articulate it to the broader nuclear science community. It was commissioned by the managements of Brookhaven National Laboratory (BNL) and Thomas Jefferson National Accelerator Facility (JLab) with the objective of presenting a summary of scientific opportunities and goals of the EIC as a follow-up to the 2007 NSAC Long Range plan. This document is a culmination of a community-wide effort in nuclear science following a series of workshops on EIC physics over the past decades and, in particular, the focused ten-week program on "Gluons and quark sea at high energies" at the Institute for Nuclear Theory in Fall 2010. It contains a brief description of a few golden physics measurements along with accelerator and detector concepts required to achieve them. It has been benefited profoundly from inputs by the users' communities of BNL and JLab. This White Paper offers the promise to propel the QCD science program in the US, established with the CEBAF accelerator at JLab and the RHIC collider at BNL, to the next QCD frontier.

Book Probing the Quark Sea and Gluons

Download or read book Probing the Quark Sea and Gluons written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: EIC is the generic name for the nuclear science-driven Electron-Ion Collider presently considered in the US. Such an EIC would be the world's first polarized electron-proton collider, and the world's first e-A collider. Very little remains known about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons of Quantum Chromodynamics (QCD). A large community effort to sharpen a compelling nuclear science case for an EIC occurred during a ten-week program taking place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The critical capabilities of a stage-I EIC are a range in center-of-mass energies from 20 to 70 GeV and variable, full polarization of electrons and light ions (the latter both longitudinal and transverse), ion species up to A=200 or so, multiple interaction regions, and a high luminosity of about 1034 electron-nucleons per cm2 and per second. The physics program of such a stage-I EIC encompass inclusive measurements (ep/A2!'+X), which require detection of the scattered lepon and/or the full scattered hadronic debris with high precision, semi-inclusive processes (ep/A2!'+h+X), which require detection in coincidence with the scattered lepton of at least one (current or target region) hadron; and exclusive processes (ep/A2!'+N'/A'+[gamma]/m), which require detection of all particles in the reaction. The main science themes of an EIC are to i) map the spin and spatial structure of quarks and gluons in nucleons, ii) discover the collective effects of gluons in atomic nuclei, and (iii) understand the emergence of hadronic matter from color charge. In addition, there are opportunities at an EIC for fundamental symmetry and nucleon structure measurements using the electroweak probe. To truly make headway to image the sea quarks and gluons in nucleons and nuclei, the EIC needs high luminosity over a range of energies as more exclusive scattering probabilities are small, and any integrated detector/interaction region design needs to provide uniform coverage to detect spectator and diffractive products. This is because e-p and even more e-A colliders have a large fraction of their science related to what happens to the nucleon or ion beams. As a result, the philosophy of integration of complex detectors into an extended interaction region faces challenging constraints. Designs feature crossing angles between the protons or heavy ions during collisions with electrons, to remove potential problems for the detector induced by synchrotron radiation. Designs allocate quite some detector space before the final-focus ion quads, at the cost of luminosity, given that uniform detection coverage is a must for deep exclusive and diffractive processes. The integrated EIC detector/interaction region design at JLab focused on establishing full acceptance for such processes over a wide range of proton energies (20-100 GeV) with well achievable interaction region magnets. The detector design at BNL uses the higher ion beam energies to achieve good detection efficiency for instance for protons following a DVCS reaction, for proton beam energies starting from 100 GeV. Following a recommendation of the 2007 US Nuclear Science Long-Range Planning effort, the DOE Office of Nuclear Physics (DOE/NP) has allocated accelerator R & D funds to lay the foundation for a polarized EIC. BNL, in association with JLab and DOE/NP, has also established a generic detector R & D program to address the scientific requirements for measurements at a future EIC.

Book Physics With A High Luminosity Polarized Electron Ion Collider   Proceedings Of The Workshop On High Energy Nuclear Physics  Epic 99

Download or read book Physics With A High Luminosity Polarized Electron Ion Collider Proceedings Of The Workshop On High Energy Nuclear Physics Epic 99 written by Leslie C Bland and published by World Scientific. This book was released on 2000-02-28 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop on Physics with an Electron-Polarized Ion Collider (EPIC-99), jointly sponsored by the Indiana University Cyclotron Facility and Nuclear Theory Center, and the Institute for Nuclear Theory, University of Washington. It was held in Bloomington, Indiana, April 8-11, 1999. The purpose was to discuss important new physics phenomena which could be investigated with a high-luminosity asymmetric collider consisting of a beam of polarized electrons (with energy roughly 5 GeV), and a beam of polarized protons or other light ions of approximately 40 GeV energy. The Workshop brought together experts in the field who highlighted the unique potential for such a facility, and compared the prospects and challenges for this collider with present and proposed facilities around the world.The proceedings of this Workshop summarize our currently available knowledge on the physics potential for a polarized asymmetric collider. It provides a unique collection of information on the opportunities which such a facility would provide.

Book An Electron Ion Collider at Jefferson Lab

Download or read book An Electron Ion Collider at Jefferson Lab written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Long term plans for the investigation of the quark and gluon structure of matter have for some time focussed on the possibility of an electron-ion collider, with the nuclear physics communities associated with JLab and BNL being particularly active. We briefly outline the current thinking on this subject at Jefferson lab.

Book Nuclear Physics

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 2013-02-25
  • ISBN : 0309260434
  • Pages : 263 pages

Download or read book Nuclear Physics written by National Research Council and published by National Academies Press. This book was released on 2013-02-25 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: The principal goals of the study were to articulate the scientific rationale and objectives of the field and then to take a long-term strategic view of U.S. nuclear science in the global context for setting future directions for the field. Nuclear Physics: Exploring the Heart of Matter provides a long-term assessment of an outlook for nuclear physics. The first phase of the report articulates the scientific rationale and objectives of the field, while the second phase provides a global context for the field and its long-term priorities and proposes a framework for progress through 2020 and beyond. In the second phase of the study, also developing a framework for progress through 2020 and beyond, the committee carefully considered the balance between universities and government facilities in terms of research and workforce development and the role of international collaborations in leveraging future investments. Nuclear physics today is a diverse field, encompassing research that spans dimensions from a tiny fraction of the volume of the individual particles (neutrons and protons) in the atomic nucleus to the enormous scales of astrophysical objects in the cosmos. Nuclear Physics: Exploring the Heart of Matter explains the research objectives, which include the desire not only to better understand the nature of matter interacting at the nuclear level, but also to describe the state of the universe that existed at the big bang. This report explains how the universe can now be studied in the most advanced colliding-beam accelerators, where strong forces are the dominant interactions, as well as the nature of neutrinos.

Book The Electron Ion Collider

Download or read book The Electron Ion Collider written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The future Electron-Ion Collider (EIC) is a project where one plans to collide high-energy electrons with beams of polarized protons and unpolarized ions (nuclei). I will give an overview of the project and its current status: the discussed physics program, key experiments, accelerator and detector designs.

Book Physics with a High Luminosity Polarized Electron Ion Collider

Download or read book Physics with a High Luminosity Polarized Electron Ion Collider written by Leslie C. Bland and published by World Scientific Publishing Company Incorporated. This book was released on 2000 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Workshop on Physics with an Electron-Polarized Ion Collider (EPIC-99), jointly sponsored by the Indiana University Cyclotron Facility and Nuclear Theory Center, and the Institute for Nuclear Theory, University of Washington. It was held in Bloomington, Indiana, April 8-11, 1999. The purpose was to discuss important new physics phenomena which could be investigated with a high-luminosity asymmetric collider consisting of a beam of polarized electrons (with energy roughly 5 GeV), and a beam of polarized protons or other light ions of approximately 40 GeV energy. The Workshop brought together experts in the field who highlighted the unique potential for such a facility, and compared the prospects and challenges for this collider with present and proposed facilities around the world. The proceedings of this Workshop summarize our currently available knowledge on the physics potential for a polarized asymmetric collider. It provides a unique collection of information,on the opportunities which such a facility would provide.

Book Why We Need an Electron ion Collider

Download or read book Why We Need an Electron ion Collider written by and published by . This book was released on 2015 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this study, we present a brief argument making the science case for an electron-ion collider.

Book Nuclear Physics with a Medium energy Electron Ion Collider

Download or read book Nuclear Physics with a Medium energy Electron Ion Collider written by and published by . This book was released on 2012 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy √s ≈ 20-70 GeV and a luminosity ≈1034 cm−2 s−1 would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.

Book Design of High Luminosity Ring Ring Electron  Light Ion Collider at CEBAF

Download or read book Design of High Luminosity Ring Ring Electron Light Ion Collider at CEBAF written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental studies of fundamental structure of nucleons require an electron-ion collider of a center-of-mass energy up to 90 GeV at luminosity up to 1035 cm-2s-1 with both beams polarized. A CEBAF-based collider of 9 GeV electrons/positrons and 225 GeV ions is envisioned to meet this science need and as a next step for CEBAF after the planned 12 GeV energy upgrade of the fixed target program. A ring-ring scheme of this collider developed recently takes advantage of the existing polarized electron CW beam from the CEBAF and a green-field design of an ion complex with electron cooling. We present a conceptual design and report design studies of this high-luminosity collider.

Book Accelerator Physics in ERL Based Polarized Electron Ion Collider

Download or read book Accelerator Physics in ERL Based Polarized Electron Ion Collider written by and published by . This book was released on 2015 with total page 8 pages. Available in PDF, EPUB and Kindle. Book excerpt: This talk will present the current accelerator physics challenges and solutions in designing ERL-based polarized electron-hadron colliders, and illustrate them with examples from eRHIC and LHeC designs. These challenges include multi-pass ERL design, highly HOM-damped SRF linacs, cost effective FFAG arcs, suppression of kink instability due to beam-beam effect, and control of ion accumulation and fast ion instabilities.

Book THE ELECTRON ION COLLIDER  A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI

Download or read book THE ELECTRON ION COLLIDER A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI written by and published by . This book was released on 2002 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

Book Probing Nucleons And Nuclei In High Energy Collisions   Proceedings Of The Int Program Int 18 3

Download or read book Probing Nucleons And Nuclei In High Energy Collisions Proceedings Of The Int Program Int 18 3 written by Alexei Prokudin and published by World Scientific. This book was released on 2020-05-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains proceedings of the 7-week INT program dedicated to the physics of the Electron-Ion Collider (EIC), the world's first polarized electron-nucleon (ep) and electron-nucleus (eA) collider to be constructed in the United States. The 2015 NSAC Long Range Plan recommended EIC as the 'highest priority for new facility construction following the completion of FRIB'. The primary goal of the EIC is to establish precise multi-dimensional imaging of quarks and gluons inside nucleons and nuclei. This includes (i) understanding the spatial and momentum space structure of the nucleon through the studies of TMDs (transverse-momentum-dependent parton distributions), GPD (generalized parton distributions) and the Wigner distribution; (ii) determining the partonic origin of the nucleon spin; (iii) exploring the new quantum chromodynamics (QCD) frontier of ultra-strong gluon fields, with the potential to seal the discovery of a new form of dense gluon matter predicted to exist in all nuclei and nucleons at small Bjorken x — the parton saturation.The program brought together both theorists and experimentalists from Jefferson Lab (JLab), Brookhaven National Laboratory (BNL) along with the national and international nuclear physics communities to assess and advance the EIC physics.

Book Future Electron Hadron Colliders

Download or read book Future Electron Hadron Colliders written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Outstanding research potential of electron-hadron colliders (EHC) was clearly demonstrated by first - and the only - electron-proton collider HERA (DESY, Germany). Physics data from HERA revealed new previously unknown facets of Quantum Chromo-Dynamics (QCD). EHC is an ultimate microscope probing QCD in its natural environment, i.e. inside the hadrons. In contrast with hadrons, electrons are elementary particles with known initial state. Hence, scattering electrons from hadrons provides a clearest pass to their secrets. It turns EHC into an ultimate machine for high precision QCD studies and opens access to rich physics with a great discovery potential: solving proton spin puzzle, observing gluon saturation or physics beyond standard model. Access to this physics requires high-energy high-luminosity EHCs and a wide reach in the center-of-mass (CM) energies. This paper gives a brief overview of four proposed electron-hadron colliders: ENC at GSI (Darmstadt, Germany), ELIC/MEIC at TJNAF (Newport News, VA, USA), eRHIC at BNL (Upton, NY, USA) and LHeC at CERN (Geneva, Switzerland). Future electron-hadron colliders promise to deliver very rich physics not only in the quantity but also in the precision. They are aiming at very high luminosity two-to-four orders of magnitude beyond the luminosity demonstrated by the very successful HERA. While ENC and LHeC are on opposite side of the energy spectrum, eRHIC and ELIC are competing for becoming an electron-ion collider (EIC) in the U.S. Administrations of BNL and Jlab, in concert with US DoE office of Nuclear Physics, work on the strategy for down-selecting between eRHIC and ELIC. The ENC, EIC and LHeC QCD physics programs to a large degree are complimentary to each other and to the LHC physics. In last decade, an Electron Ion Collider (EIC) collaboration held about 25 collaboration meetings to develop physics program for EIC with CM energy H"00 GeV. One of these meetings was held at GSI, where ENC topic was in the center of discussions. First dedicated LHeC workshop was held in 2008, with a number of dedicated workshops following it. Intense accelerator R & D program is needed to address the challenges posed by the EIC.

Book High energy High luminosity Electron ion Collider ERHIC

Download or read book High energy High luminosity Electron ion Collider ERHIC written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we describe a future electron-ion collider (EIC), based on the existing Relativistic Heavy Ion Collider (RHIC) hadron facility, with two intersecting superconducting rings, each 3.8 km in circumference. The replacement cost of the RHIC facility is about two billion US dollars, and the eRHIC will fully take advantage and utilize this investment. We plan adding a polarized 5-30 GeV electron beam to collide with variety of species in the existing RHIC accelerator complex, from polarized protons with a top energy of 325 GeV, to heavy fully-striped ions with energies up to 130 GeV/u. Brookhaven's innovative design, is based on one of the RHIC's hadron rings and a multi-pass energy-recovery linac (ERL). Using the ERL as the electron accelerator assures high luminosity in the 1033-1034 cm−2 sec−1 range, and for the natural staging of eRHIC, with the ERL located inside the RHIC tunnel. The eRHIC will provide electron-hadron collisions in up to three interaction regions. We detail the eRHIC's performance in Section 2. Since first paper on eRHIC paper in 2000, its design underwent several iterations. Initially, the main eRHIC option (the so-called ring-ring, RR, design) was based on an electron ring, with the linac-ring (LR) option as a backup. In 2004, we published the detailed 'eRHIC 0th Order Design Report' including a cost-estimate for the RR design. After detailed studies, we found that an LR eRHIC has about a 10-fold higher luminosity than the RR. Since 2007, the LR, with its natural staging strategy and full transparency for polarized electrons, became the main choice for eRHIC. In 2009, we completed technical studies of the design and dynamics for MeRHIC with 3-pass 4 GeV ERL. We learned much from this evaluation, completed a bottom-up cost estimate for this $350M machine, but then shelved the design. In the same year, we turned again to considering the cost-effective, all-in-tunnel six-pass ERL for our design of the high-luminosity eRHIC. In it, electrons from the polarized pre-injector will be accelerated to their top energy by passing six times through two SRF linacs. After colliding with the hadron beam in up to three detectors, the e-beam will be decelerated by the same linacs and dumped. The six-pass magnetic system with small-gap magnets will be installed from the start. We will stage the electron energy from 5 GeV to 30 GeV stepwise by increasing the lengths of the SRF linacs. We discuss details of eRHIC's layout in Section 3. We considered several IR designs for eRHIC. The latest one, with a 10 mrad crossing angle and [beta]* = 5 cm, takes advantage of newly commissioned Nb3Sn quadrupoles. Section 4 details the eRHIC lattice and the IR layout. The current eRHIC design focuses on electron-hadron collisions. If justified by the EIC physics, we will add a 30 GeV polarized positron ring with full energy injection from eRHIC ERL. This addition to the eRHIC facility provide for positron-hadron collisions, but at a significantly lower luminosity than those attainable in the electron-hadron mode. As a novel high-luminosity EIC, eRHIC faces many technical challenges, such as generating 50 mA of polarized electron current. eRHIC also will employ coherent electron cooling (CeC) for the hadron beams. Staff at BNL, JLab, and MIT is pursuing vigorously an R & D program for resolving addressing these obstacles. In collaboration with Jlab, BNL plans experimentally to demonstrate CeC at the RHIC. We discuss the structure and the status of the eRHIC R & D in Section 5.