EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Amplificateurs de puissance et convertisseurs DC DC    base de GaN pour des applications hyperfr  quences

Download or read book Amplificateurs de puissance et convertisseurs DC DC base de GaN pour des applications hyperfr quences written by Florent Gamand and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dans les systèmes de télécommunication modernes et en particulier pour l'amplification de puissance RF, le rendement est un élément clé. Il doit être le plus élevé possible pour réduire la consommation. Afin d'augmenter le rendement global d'un amplificateur de puissance, la technique de polarisation dynamique, souvent basée sur l'association d'un amplificateur et d'un convertisseur DC/DC, est couramment employée. Les transistors de type HEMT GaN délivrent des puissances importantes tout en ayant des fréquences de fonctionnement élevées, de plus leur capacité à commuter rapidement et leurs faibles pertes résistives en font d'excellents candidats à la fois pour les applications d'amplification de puissance et de commutation à haute fréquence de découpage et haut rendement tels que les convertisseurs DC/DC utilisés dans le cadre d'une polarisation dynamique.Le premier chapitre de ce mémoire est consacré aux propriétés des transistors à base de GaN et leurs intérêts pour des applications d'amplification hyperfréquence et de commutation. Leur caractérisation et modélisation sont également abordées. Le deuxième chapitre est consacré à la conception et à la caractérisation de convertisseurs DC/DC GaN à haute vitesse de découpage pour des applications de polarisation dynamique d'amplificateurs de puissance. Le troisième chapitre aborde la conception d'amplificateurs de puissance GaN à haut rendement en bande C pour des applications de télécommunication. L'association d'un convertisseur DC/DC développé au chapitre II et d'un amplificateur GaN en bande S dans le cadre de la polarisation dynamique sera également présentée et ses effets sur l'amélioration du rendement étudiés.

Book Reconfigurable Gate Driver Toward High Power Efficiency and High Power Density Converters

Download or read book Reconfigurable Gate Driver Toward High Power Efficiency and High Power Density Converters written by Mousa Karimi and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Les systèmes de gestion de l'énergie exigent des convertisseurs de puissance pour fournir une conversion de puissance adaptée à diverses utilisations. Il existe différents types de convertisseurs de puissance, tel que les amplificateurs de puissance de classe D, les demi-ponts, les ponts complets, les amplificateurs de puissance de classe E, les convertisseurs buck et dernièrement les convertisseurs boost. Prenons par exemple les dispositifs implantables, lorsque l'énergie est prélevée de la source principale, des convertisseurs de puissance buck ou boost sont nécessaires pour traiter l'énergie de l'entrée et fournir une énergie propre et adaptée aux différentes parties du système. D'autre part, dans les stations de charge des voitures électriques, les nouveaux téléphones portables, les stimulateurs neuronaux, etc., l'énergie sans fil a été utilisée pour assurer une alimentation à distance, et des amplificateurs de puissance de classe E sont développés pour accomplir cette tâche. Les amplificateurs de puissance de classe D sont un excellent choix pour les casques d'écoute ou les haut-parleurs en raison de leur grande efficacité. Dans le cas des interfaces de capteurs, les demi-ponts et les ponts complets sont les interfaces appropriées entre les systèmes à faible et à forte puissance. Dans les applications automobiles, l'interface du capteur reçoit le signal du côté puissance réduite et le transmet à un réseau du côté puissance élevée. En outre, l'interface du capteur doit recevoir un signal du côté haute puissance et le convertir vers la côté basse puissance. Tous les systèmes mentionnés ci-dessus nécessitent l'inclusion d'un pilote de porte spécifique dans les circuits, selon les applications. Les commandes de porte comprennent généralement un décalage du niveau de commande niveau supérieur, le levier de changement de niveau inférieur, une chaîne de tampon, un circuit de verrouillage sous tension, un circuit de temps mort, des portes logiques, un inverseur de Schmitt et un mécanisme de démarrage. Ces circuits sont nécessaires pour assurer le bon fonctionnement des systèmes de conversion de puissance. Un circuit d'attaque de porte reconfigurable prendrait en charge une vaste gamme de convertisseurs de puissance ayant une tension d'entrée V[indice IN] et un courant de sortie I[indice Load] variables. L'objectif de ce projet est d'étudier intensivement les causes de différentes pertes dans les convertisseurs de puissance et de proposer ensuite de nouveaux circuits et méthodologies dans les différents circuits des conducteurs de porte pour atteindre une conversion de puissance avec une haute efficacité et densité de puissance. Nous proposons dans cette thèse de nouveaux circuits de gestion des temps mort, un Shapeshifter de niveau plus élevé et un Shapeshifter de niveau inférieur avec de nouvelles topologies qui ont été pleinement caractérisées expérimentalement. De plus, l'équation mathématique du temps mort optimal pour les faces haute et basse d'un convertisseur buck est dérivée et expérimentalement prouvée. Les circuits intégrés personnalisés et les méthodologies proposées sont validés avec différents convertisseurs de puissance, tels que les convertisseurs semi-pont et en boucle ouverte, en utilisant des composants standard pour démontrer leur supériorité sur les solutions traditionnelles. Les principales contributions de cette recherche ont été présentées à sept conférences prestigieuses, trois articles évalués par des pairs, qui ont été publiés ou présentés, et une divulgation d'invention. Une contribution importante de ce travail recherche est la proposition d'un nouveau générateur actif CMOS intégré dédié de signaux sans chevauchement. Ce générateur a été fabriqué à l'aide de la technologie AMS de 0.35μm et consomme 16.8mW à partir d'une tension d'alimentation de 3.3V pour commander de manière appropriée les côtés bas et haut d'un demi-pont afin d'éliminer la propagation. La puce fabriquée est validée de façon expérimentale avec un demi-pont, qui a été mis en œuvre avec des composants disponibles sur le marché et qui contrôle une charge R-L. Les résultats des mesures montrent une réduction de 40% de la perte totale d'un demi-pont de 45V d'entrée à 1MHz par rapport au fonctionnement du demi-pont sans notre circuit intégré dédié. Le circuit principal du circuit d'attaque de grille côté haut est le décaleur de niveau, qui fournit un signal de grande amplitude pour le commutateur de puissance côté haut. Une nouvelle structure de décalage de niveau avec un délai de propagation minimal doit être présentée. Nous proposons une nouvelle topologie de décalage de niveau pour le côté haut des drivers de porte afin de produire des convertisseurs de puissance efficaces. Le SL présente des délais de propagation mesurés de 7.6ns. Les résultats mesurés montrent le fonctionnement du circuit présenté sur la plage de fréquence de 1MHz à 130MHz. Le circuit fabriqué consomme 31.5pW de puissance statique et 3.4pJ d'énergie par transition à 1kHz, V[indice DDL] = 0.8V , V[indice DDH] = 3.0V, et une charge capacitive C[indice L] = 0.1pF. La consommation énergétique totale mesurée par rapport à la charge capacitive de 0.1 à 100nF est indiquée. Un autre nouveau décalage vers le bas est proposé pour être utilisé sur le côté bas des pilotes de portes. Ce circuit est également nécessaire dans la partie Rx du réseau de bus de données pour recevoir le signal haute tension du réseau et délivrer un signal de faible amplitude à la partie basse tension. L'une des principales contributions de ces travaux est la proposition d'un modèle de référence pour l'abaissement de niveau à puissance unique reconfigurable. Le circuit proposé pilote avec succès une gamme de charges capacitives allant de 10fF à 350pF. Le circuit présenté consomme des puissances statiques et dynamiques de 62.37pW et 108.9μW, respectivement, à partir d'une alimentation de 3.3V lorsqu'il fonctionne à 1MHz et pilote une charge capacitive de 10pF. Les résultats de la simulation post-layout montrent que les délais de propagation de chute et de montée dans les trois configurations sont respectivement de l'ordre de 0.54 à 26.5ns et de 11.2 à 117.2ns. La puce occupe une surface de 80μm × 100μm. En effet, les temps morts des côtés hauts et bas varient en raison de la différence de fonctionnement des commutateurs de puissance côté haut et côté bas, qui sont respectivement en commutation dure et douce. Par conséquent, un générateur de temps mort reconfigurable asymétrique doit être ajouté aux pilotes de portes traditionnelles pour obtenir une conversion efficace. Notamment, le temps mort asymétrique optimal pour les côtés hauts et bas des convertisseurs de puissance à base de Gan doit être fourni par un circuit de commande de grille reconfigurable pour obtenir une conception efficace. Le temps mort optimal pour les convertisseurs de puissance dépend de la topologie. Une autre contribution importante de ce travail est la dérivation d'une équation précise du temps mort optimal pour un convertisseur buck. Le générateur de temps mort asymétrique reconfigurable fabriqué sur mesure est connecté à un convertisseur buck pour valider le fonctionnement du circuit proposé et l'équation dérivée. De plus le rendement d'un convertisseur buck typique avec T[indice DLH] minimum et T[indice DHL] optimal (basé sur l'équation dérivée) à I[indice Load] = 25mA est amélioré de 12% par rapport à un convertisseur avec un temps mort fixe de T[indice DLH] = T[indice DHL] = 12ns.