Download or read book Aluminum Stress Adaptation in Plants written by Sanjib Kumar Panda and published by Springer. This book was released on 2015-10-21 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an overview of our current understanding of aluminium toxicity and tolerance in plants. It covers all relevant aspects from molecular and cellular biology, to genetic approaches, root biology and plant physiology. The contribution of arbuscular mycorrhizal fungi to alleviating aluminium toxicity is also discussed. Over 40% of total agricultural land resources are acidic in nature, with aluminium being the major toxicant. Plant roots are particularly susceptible to aluminium stress, but much of the complex mechanism underlying its toxicity and tolerance is unknown and aluminium stress perception in plants remains poorly understood. The diverse facets of aluminium stress adaptation covered in this book are relevant to plant biology students at all levels, as well researchers and it provides a valuable contribution to our understanding of plant adaptation to the changing environment.
Download or read book Root Adaptations to Multiple Stress Factors written by Idupulapati Madhusudana Rao and published by Frontiers Media SA. This book was released on 2021-02-25 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Aluminum Stress Adaptation in Plants written by Sanjib Kumar Panda and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an overview of our current understanding of aluminium toxicity and tolerance in plants. It covers all relevant aspects from molecular and cellular biology, to genetic approaches, root biology and plant physiology. The contribution of arbuscular mycorrhizal fungi to alleviating aluminium toxicity is also discussed. Over 40% of total agricultural land resources are acidic in nature, with aluminium being the major toxicant. Plant roots are particularly susceptible to aluminium stress, but much of the complex mechanism underlying its toxicity and tolerance is unknown, and aluminium stress perception in plants remains poorly understood. The diverse facets of aluminium stress adaptation covered in this book are relevant to plant biology students at all levels, as well researchers, and it provides a valuable contribution to our understanding of plant adaptation to the changing environment.
Download or read book Plant Metal Interaction written by Parvaiz Ahmad and published by Elsevier. This book was released on 2016-02-02 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant Metal Interaction: Emerging Remediation Techniques covers different heavy metals and their effect on soils and plants, along with the remediation techniques currently available. As cultivable land is declining day-by-day as a result of increased metals in our soil and water, there is an urgent need to remediate these effects. This multi-contributed book is divided into four sections covering the whole of plant metal interactions, including heavy metals, approaches to alleviate heavy metal stress, microbial approaches to remove heavy metals, and phytoremediation. - Provides an overview of the effect of different heavy metals on growth, biochemical reactions, and physiology of various plants - Serves as a reference guide for available techniques, challenges, and possible solutions in heavy metal remediation - Covers sustainable technologies in uptake and removal of heavy metals
Download or read book Plant Hormones and Climate Change written by Golam Jalal Ahammed and published by Springer Nature. This book was released on 2023-01-01 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides new insights into the mechanisms of plant hormone-mediated growth regulation and stress tolerance covering the most recent biochemical, physiological, genetic, and molecular studies. It also highlights the potential implications of plant hormones in ensuring food security in the face of climate change. Each chapter covers particular abiotic stress (heat stress, cold, drought, flooding, soil acidity, ozone, heavy metals, elevated CO2, acid rain, and photooxidative stress) and the versatile role of plant hormones in stress perception, signal transduction, and subsequent stress tolerance in the context of climate change. Some chapters also discuss hormonal crosstalk or interaction in plant stress adaptation and highlight convergence points of crosstalk between plant hormones and environmental signals such as light, which are considered recent breakthrough studies in plant hormone research. As exogenous application or genetic manipulation of hormones can alter crop yield under favorable and/or unfavorable environmental conditions, the utilization of plant hormones in modern agriculture is of great significance in the context of global climate change. Thus, it is important to further explore how hormone manipulation can secure a good harvest under challenging environmental conditions. This volume is dedicated to Sustainable Development Goals (SDGs) 2 and 13. The volume is suitable for plant science-related courses, such as plant stress physiology, plant growth regulators, and physiology and biochemistry of phytohormones for undergraduate, graduate, and postgraduate students at colleges and universities. The book can be a useful reference for academicians and scientists involved in research related to plant hormones and stress tolerance.
Download or read book Plant Adaptation to Abiotic Stress From Signaling Pathways and Microbiomes to Molecular Mechanisms written by Radhouane Chaffai and published by Springer Nature. This book was released on 2024 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zusammenfassung: The book "Plant Adaptation to Abiotic Stress: From Signaling Pathways and Microbiomes to Molecular Mechanisms" comprehensively examines abiotic stressors--cold, heat, light, salinity, and water scarcity--across its 18 chapters. Focusing particularly on Arabidopsis thaliana, it investigates abiotic stresses, adaptation strategies, and molecular pathways. Furthermore, it addresses broader issues, including climate challenges, food security, water scarcity, and agricultural concerns such as soil acidity and aluminum stress. It proposes adaptive measures for cultivating stress-resistant crops and sheds light on genetic modification methods such as CRISPR-Cas9, integrating nanotechnology in plant breeding. Emphasizing transcription factors, post-translational protein modifications, and diverse noncoding RNAs (long noncoding RNAs, circular RNAs, microRNAs, and small interfering RNAs), the book highlights their role in regulating gene expression during stress responses. It specifically underscores secondary messengers, plant hormones, and MAPK cascades within intracellular signaling pathways. Additionally, it discusses the roles of endophytic bacteria and microbial interactions in bolstering stress resilience. The book explores state-of-the-art research methodologies in plant breeding, omics approaches, and nanotechnology integration for developing stress-resistant crop varieties, advocating for agricultural sustainability. Tailored for plant physiology scientists, academics, and postgraduate students, it amalgamates diverse research findings, serving as a pivotal resource to comprehend intricate plant responses to environmental challenges
Download or read book Metalloids in Plants written by Rupesh Deshmukh and published by John Wiley & Sons. This book was released on 2020-06-29 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.
Download or read book Metalloids in Plants written by Rupesh Deshmukh and published by John Wiley & Sons. This book was released on 2020-05-18 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding metalloids and the potential impact they can have upon crop success or failure Metalloids have a complex relationship with plant life. Exhibiting a combination of metal and non-metal characteristics, this small group of elements – which includes boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), and tellurium (Te) – may hinder or enhance the growth and survival of crops. The causes underlying the effects that different metalloids may have upon certain plants range from genetic variance to anatomical factors, the complexities of which can pose a challenge to botanists and agriculturalists of all backgrounds. With Metalloids in Plants, a group of leading plant scientists present a complete guide to the beneficial and adverse impacts of metalloids at morphological, anatomical, biochemical, and molecular levels. Insightful analysis of data on genetic regulation helps to inform the optimization of farming, indicating how one may boost the uptake of beneficial metalloids and reduce the influence of toxic ones. Contained within this essential new text, there are: Expert analyses of the role of metalloids in plants, covering their benefits as well as their adverse effects Explanations of the physiological, biochemical, and genetic factors at play in plant uptake of metalloids Outlines of the breeding and genetic engineering techniques involved in the generation of resistant crops Written for students and professionals in the fields of agriculture, botany, molecular biology, and biotechnology, Metalloids in Plants is an invaluable overview of the relationship between crops and these unusual elements.
Download or read book Beneficial Chemical Elements of Plants written by Sangeeta Pandey and published by John Wiley & Sons. This book was released on 2023-07-13 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: BENEFICIAL CHEMICAL ELEMENTS OF PLANTS Understand beneficial elements and their role in the future of botany and agriculture Beneficial elements are those which, while not essential to plant life, can provide stimulation and enhance plant growth. Properly harnessed, these elements can bolster plant growth in the face of environmental conditions—including drought, nutrient deficiency, and excessive soil salinity—and biotic stresses like pathogens and animal activity. As climate change and population growth pose increasingly serious challenges to agriculture and essential plant production, it has never been more important to unleash the potential of beneficial elements. Beneficial Chemical Elements of Plants is an essential resource for researchers and industry specialists looking to enhance their understanding of these elements and the range and variety of their enhancements to plant growth. Written by leading scholars in the field of plant stress tolerance and nutrient enrichment, it discusses not only the rich possibilities of beneficial elements but their mechanisms of action at both biochemical and molecular levels. It details the precise potential roles played by each major beneficial element and surveys a range of elemental responses to specific environmental conditions and plant stresses. Beneficial Chemical Elements of Plants readers will also find: Chapters covering beneficial elements including aluminum, cobalt, sodium, selenium, and silicon Discussion of application methods and typical plant responses Treatment of beneficial elements in a wider environmental context Beneficial element applications to the field of sustainable agriculture Beneficial Chemical Elements of Plants is a fundamental starting point for researchers and students in the fields of plant physiology, crop science, agriculture, and botany, as well as for professionals in the biotechnology and agricultural industries.
Download or read book Stress Physiology of Tea in the Face of Climate Change written by Wen-Yan Han and published by Springer. This book was released on 2018-11-23 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the existing knowledge regarding the effect of global climate change on tea plant physiology, biochemistry, and metabolism as well as economic and societal aspects of the tea industry. Specifically, this book synthesizes recent advances in the physiological and molecular mechanisms of the responses of tea plants to various abiotic and biotic stressors including high temperature, low temperature or freezing, drought, low light, UV radiation, elevated CO2, ozone, nutrient deficiency, insect herbivory, and pathogenic agents. This book also discusses challenges and potential management strategies for sustaining tea yield and quality in the face of climate change. Dr. Wen-Yan Han is a Professor and Dr. Xin Li is an Associate Professor at the Tea Research Institute of the Chinese Academy of Agricultural Sciences (TRI, CAAS), Hangzhou, PR China. Dr. Golam Jalal Ahammed is an Associate Professor at the Department of Horticulture, College of Forestry, Henan University of Science and Technology, Luoyang, PR China.
Download or read book Soil Acidity and Liming written by Fred Adams and published by . This book was released on 1984 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The chemistry of acidity. Physiological effects of hydrogen, aluminum, and managanese toxicities in acid soil. Physiological aspects of calcium, magnesium, and molybdenum deficiencies in plants. Liming materials and practices. Crop response to lime in the southern united states. Crop response to lime in the midwestern united states. Crop response to lime in the northeastern united states. Crop response to lime in the wested states. Crop response to lime on soils in the tropics. Glossary-common and scientific names of crops referred to in this monograph.
Download or read book Genomic Designing for Abiotic Stress Resistant Cereal Crops written by Chittaranjan Kole and published by Springer Nature. This book was released on 2021-08-31 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents abiotic stresses that cause crop damage in the range of 6-20%. Understanding the interaction of crop plants to the abiotic stresses caused by heat, cold, drought, flooding, submergence, salinity, acidity, etc., is important to develop resistant crop varieties. Knowledge on the advanced genetic and genomic crop improvement strategies including molecular breeding, transgenics, genomic-assisted breeding, and the recently emerging genome editing for developing resistant varieties in cereal crops is imperative for addressing FPNEE (food, health, nutrition, energy, and environment) security. Whole genome sequencing of these crops followed by genotyping-by-sequencing has facilitated precise information about the genes conferring resistance useful for gene discovery, allele mining, and shuttle breeding which in turn opened up the scope for 'designing' crop genomes with resistance to abiotic stresses. The nine chapters each dedicated to a cereal crop in this volume are deliberate on different types of abiotic stresses and their effects on and interaction with crop plants; enumerate on the available genetic diversity with regard to abiotic stress resistance among available cultivars; illuminate on the potential gene pools for utilization in interspecific gene transfer; are brief on the classical genetics of stress resistance and traditional breeding for transferring them to their cultivated counterparts; elucidate on the success stories of genetic engineering for developing abiotic stress-resistant crop varieties; discuss on molecular mapping of genes and QTLs underlying stress resistance and their marker-assisted introgression into elite varieties; enunciate on different emerging genomics-aided techniques including genomic selection, allele mining, gene discovery, and gene pyramiding for developing adaptive crop varieties with higher quantity and quality, and also elaborate some case studies on genome editing focusing on specific genes for generating abiotic stress-resistant crops.
Download or read book Metabolic Adaptations in Plants During Abiotic Stress written by Akula Ramakrishna and published by CRC Press. This book was released on 2018-12-07 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: Key features: Serves as a cutting-edge resource for researchers and students who are studying plant abiotic stress tolerance and crop improvement through metabolic adaptations Presents the latest trends and developments in the field of metabolic engineering and abiotic stress tolerance Addresses the adaptation of plants to climatic changes Gives special attention to emerging topics such as the role of secondary metabolites, small RNA mediated regulation and signaling molecule responses to stresses Provides extensive references that serve as entry points for further research Metabolic Adaptations in Plants during Abiotic Stress covers a topic of past, present and future interest for both scientists and policy makers as the global challenge of climate change is addressed. Understanding the mechanisms of plant adaptation to environmental stresses can provide the necessary tools needed to take action to protect them, and hence ourselves. This book brings together recent findings about metabolic adaptations during abiotic stress and in diverse areas of plant adaptation. It covers not only the published results, but also introduces new concepts and findings to offer original views on the perspectives and challenges in this field.
Download or read book Plant Microbe Interactions in Agro Ecological Perspectives written by Dhananjaya Pratap Singh and published by Springer. This book was released on 2017-12-15 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book puts an updated account on functional aspects of multiphasic microbial interactions within and between plants and their ecosystem. Multipronged interaction in the soil microbial communities with the plants constitute a relay of mechanisms that make profound changes in plant and its micro-environment in the rhizopshere at physiological, biochemical and molecular levels. In agro-ecological perspectives, such interactions are known to recycle nutrients and regulate signalling molecules, phytohormones and other small molecules that help plant growth and development. Such aspects are described deeply in this book taking examples from various crop plants and microbial systems. Authors described the most advantageous prospects of plant-microbe interaction in terms of inoculation of beneficial microorganisms (microbial inoculants) with the plants in which microbes proliferate in the root rhizosphere system and benefit plants' with definite functions like fixation of nitrogen, solubilization and mobilization of P, K, Zn and production of phytohormones. The subject of this book and the content presented herein has great relevance to the agro-ecological sustainability of crop plants with the help of microbial interactions. The chapters presented focus on defining and assessing the impact of beneficial microbial interactions on different soils, crops and abiotic conditions. This volume entails about exploiting beneficial microbial interactions to help plants under abiotic conditions, microbe-mediated induced systemic tolerance, role of mycorrhizal interactions in improving plant tolerance against stresses, PGPR as nutrient mobilizers, phytostimulants, antagonists and biocontrol agents, plant interactions with Trichoderma and other bioagents for sustainable intensification in agriculture, cyanobacteria as PGPRs, plant microbiome for crop management and phytoremediation and rhizoremediation using microbial communities. The overall content entrust advanced knowledge and applicability of diversified biotechnological, techno-commercial and agro-ecological aspects of microbial interactions and inoculants as inputs, which upon inoculation with crop plants benefit them in multiple ways.
Download or read book Abiotic Stress Adaptation and Tolerance Mechanisms in Crop Plants written by Jiban Shrestha and published by Frontiers Media SA. This book was released on 2024-06-27 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Agricultural communities are being affected by climate change. Droughts, heat waves, cold snaps, and flooding are all regarded as severe threats to crop production as they hinder plant growth and development, resulting in yield losses. Plants respond to stress through a complex process that includes changes in physiological and biochemical processes, gene expression, and alterations in the amounts of metabolites and proteins at different developmental stages. This special issue will focus on recent advances in the use of various traditional and modern biotechnological strategies to understand stress adaptation and tolerance mechanisms including (but not limited to) genomics, transcriptomics, metabolomics, proteomics, miRNA, genome editing, transgenic plants, exogenous application of plant growth regulators, and so on. Abiotic stress is a key constraint to agricultural production around the world. Water deficit, excess precipitation, high and low temperature, and salinity are the most prevalent abiotic stresses. Compaction, mineral availability, and pH-related stressors are among the others. This Research Topic aims to highlight the most recent breakthroughs in plant responses to abiotic stresses and adaptation/tolerance strategies. This special issue provides the advanced toolkit and technologies that are used to investigate and understand plant responses to abiotic stress. The purpose of this special issue is to give a platform for scientists and academics from across the world to promote, share, and discuss new concerns and advancements in the field of abiotic stress in plants. Current updates and recent developments in the physiological, molecular, and genetic perspectives on combined and sequential stress responses and tolerance in field crops are expected in articles. Original research and review articles dealing with abiotic stress are welcomed. In this special issue, potential topics include, but are not limited to: • Physiological, biochemical and molecular responses of plants under abiotic stress. • Systems biology approaches to study abiotic stress in crop plants. • Phenotyping for abiotic stress tolerance in crops. • Physiological and molecular characterization of crop tolerance to abiotic stresses. • Molecular breeding for developing and improving abiotic stress resilience in crops. • Microbial mitigation of abiotic stress responses in crops • Omics technologies for abiotic stress tolerance in plants. • Performance of novel GMO crops under abiotic stress conditions. • CRISPR-Cas Genome editing tools for the Improvement of abiotic stress tolerance in plants. • Crop production in abiotic stress conditions.
Download or read book Plant Metal and Metalloid Transporters written by Kundan Kumar and published by Springer Nature. This book was released on 2022-10-29 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book stands as a one place knowledge hub for plant metal(loid) transporters. The book comprehensively covers holistic aspect of metal(loid) transporters involved in uptake and translocation of essential as well as toxic metal(loid)s. Essential and beneficial metal(loid)s are required in every biological process for normal plant growth and development, however in excess they are toxic. There are toxic metal(loid)s also whose accumulation in plants interferes with normal cellular functioning and hampers growth of plants. Hence, metal(loid) uptake and accumulation in plants is a highly regulated phenomenon involving the role of several transporters, enzymes, metabolites, transcription factors and post translational modifications. The book contains chapters from the experts and the contents of the book are presented in simple language and represented through beautiful and scientifically informative figures and tables. This book is of interest to teachers, researchers, doctoral and graduate students working in the area of plant physiology, environmental biotechnology, plant biotechnology metal(loid) stress, phytoremediation and crop biofortification.
Download or read book Sustainable Soil and Water Management Practices for Agricultural Security written by Kuzmych, Lyudmyla and published by IGI Global. This book was released on 2024-10-03 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sustainable soil and water management practices play a crucial role in ensuring agricultural security by safeguarding natural resources while enhancing productivity and resilience against environmental challenges. As global populations rise and climate variability intensifies, the effective management of soil health and water resources becomes increasingly important. Practices such as conservation, crop rotation, integrated pest management, and precision irrigation promote sustainable farming while mitigating soil erosion, preserving water quality, and optimizing nutrient utilization. By adopting these practices, farmers can bolster food security, protect biodiversity, and contribute to the long-term sustainability of agricultural systems amidst evolving climate and environmental pressures. Sustainable Soil and Water Management Practices for Agricultural Security explores effective strategies for agricultural security through sustainable environmental practices. It covers factors contributing to improved plant cultivation and irrigation management while focused on sustainability and climate awareness. This book covers topics such as drainage systems, irrigation practices, and biotechnology, and is a useful resource for biologists, agriculture professionals, ecologists, scientists, government officials, researchers, and academicians.