EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Algebraic Methods in Nonlinear Perturbation Theory

Download or read book Algebraic Methods in Nonlinear Perturbation Theory written by V. N. Bogaevski and published by . This book was released on 2014-01-15 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Algebraic Methods in Nonlinear Perturbation Theory

Download or read book Algebraic Methods in Nonlinear Perturbation Theory written by V.N. Bogaevski and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of interest to everybody working on perturbation theory in differential equations, this book requires only a standard mathematical background in engineering and does not require reference to the special literature. Topics covered include: matrix perturbation theory; systems of ordinary differential equations with small parameters; reconstruction and equations in partial derivatives. While boundary problems are not discussed, the book is clearly illustrated by numerous examples.

Book Algebraic Methods in Nonlinear Perturbation Theory

Download or read book Algebraic Methods in Nonlinear Perturbation Theory written by V.N. Bogaevski and published by Springer. This book was released on 1991-05-10 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of interest to everybody working on perturbation theory in differential equations, this book requires only a standard mathematical background in engineering and does not require reference to the special literature. Topics covered include: matrix perturbation theory; systems of ordinary differential equations with small parameters; reconstruction and equations in partial derivatives. While boundary problems are not discussed, the book is clearly illustrated by numerous examples.

Book Perturbation Methods  Bifurcation Theory and Computer Algebra

Download or read book Perturbation Methods Bifurcation Theory and Computer Algebra written by Richard H. Rand and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation methods have always been an important tool for treating nonlinear differential equations. Now the drudgery associated with them has been eliminated! This book offers computer algebra (MACSYMA) programs which implement the most popular perturbation methods. Not only does this avoid the errors associated with hand computation, but the increase in efficiency permits more complicated problems to be tackled. This book is useful both for the beginner learning perturbation methods for the first time, as well as for the researcher. Methods covered include: Lindstedt's method, center manifolds, normal forms, two variable expansion method (method of multiple scales), averaging, Lie transforms and Liapunov-Schmidt reduction. For each method the book includes an introduction and some example problems solved both by hand and by machine. The examples feature common bifurcations such as the pitchfork and the Hopf. The MACSYMA code for each method is given and suggested exercises are provided at the end of each Chapter. An Appendix offers a brief introduction to MACSYMA.

Book Perturbations

    Book Details:
  • Author : James A. Murdock
  • Publisher : SIAM
  • Release : 1999-01-01
  • ISBN : 9781611971095
  • Pages : 358 pages

Download or read book Perturbations written by James A. Murdock and published by SIAM. This book was released on 1999-01-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.

Book Perturbation Theory for Matrix Equations

Download or read book Perturbation Theory for Matrix Equations written by M. Konstantinov and published by Gulf Professional Publishing. This book was released on 2003-05-20 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis. In this book a general perturbation theory for matrix algebraic equations is presented. Local and non-local perturbation bounds are derived for general types of matrix equations as well as for the most important equations arising in linear algebra and control theory. A large number of examples, tables and figures is included in order to illustrate the perturbation techniques and bounds. Key features: • The first book in this field • Can be used by a variety of specialists • Material is self-contained • Results can be used in the development of reliable computational algorithms • A large number of examples and graphical illustrations are given • Written by prominent specialists in the field

Book Algebraic Approach to Simple Quantum Systems

Download or read book Algebraic Approach to Simple Quantum Systems written by Barry G. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the use of algebraic methods and sym bolic computation for simple quantum systems with applications to large order perturbation theory. It is the first book to integrate Lie algebras, algebraic perturbation theory and symbolic computation in a form suitable for students and researchers in theoretical and computational chemistry and is conveniently divided into two parts. The first part, Chapters 1 to 6, provides a pedagogical introduction to the important Lie algebras so(3), so(2,1), so(4) and so(4,2) needed for the study of simple quantum systems such as the D-dimensional hydrogen atom and harmonic oscillator. This material is suitable for advanced undergraduate and beginning graduate students. Of particular importance is the use of so(2,1) in Chapter 4 as a spectrum generating algebra for several important systems such as the non-relativistic hydrogen atom and the relativistic Klein-Gordon and Dirac equations. This approach provides an interesting and important alternative to the usual textbook approach using series solutions of differential equations.

Book Symmetry and Perturbation Theory in Nonlinear Dynamics

Download or read book Symmetry and Perturbation Theory in Nonlinear Dynamics written by Giampaolo Cicogna and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: has been in the of a Symmetry major ingredient development quantum perturba tion and it is a basic of the of theory, ingredient theory integrable (Hamiltonian and of the the use in context of non Hamiltonian) systems; yet, symmetry gen eral is rather recent. From the of view of nonlinear perturbation theory point the use of has become dynamics, widespread only through equivariant symmetry bifurcation in this attention has been confined to linear even theory; case, mostly symmetries. in recent the and of methods for dif Also, theory practice symmetry years ferential has become and has been to a equations increasingly popular applied of the of the book Olver This by variety problems (following appearance [2621). with is and deals of nature theory deeply geometrical symmetries general (pro vided that described i.e. in this context there is are vector no they by fields), to limit attention to linear reason symmetries. In this look the basic tools of i.e. normal book we at perturbation theory, introduced Poincar6 about and their inter a forms (first by century ago) study action with with no limitation to linear ones. We focus on the most symmetries, basic fixed the and i.e. a setting, systems having point (at origin) perturbative around thus is local.

Book Algebraic Analysis of Singular Perturbation Theory

Download or read book Algebraic Analysis of Singular Perturbation Theory written by Takahiro Kawai and published by American Mathematical Soc.. This book was released on 2005 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of this book is the study of singular perturbations of ordinary differential equations, i.e., perturbations that represent solutions as asymptotic series rather than as analytic functions in a perturbation parameter. The main method used is the so-called WKB (Wentzel-Kramers-Brillouin) method, originally invented for the study of quantum-mechanical systems. The authors describe in detail the WKB method and its applications to the study of monodromy problems for Fuchsian differential equations and to the analysis of Painleve functions. This volume is suitable for graduate students and researchers interested in differential equations and special functions.

Book Averaging Methods in Nonlinear Dynamical Systems

Download or read book Averaging Methods in Nonlinear Dynamical Systems written by Jan A. Sanders and published by Springer Science & Business Media. This book was released on 2007-08-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation theory and in particular normal form theory has shown strong growth in recent decades. This book is a drastic revision of the first edition of the averaging book. The updated chapters represent new insights in averaging, in particular its relation with dynamical systems and the theory of normal forms. Also new are survey appendices on invariant manifolds. One of the most striking features of the book is the collection of examples, which range from the very simple to some that are elaborate, realistic, and of considerable practical importance. Most of them are presented in careful detail and are illustrated with illuminating diagrams.

Book Introduction to Perturbation Techniques

Download or read book Introduction to Perturbation Techniques written by Ali H. Nayfeh and published by John Wiley & Sons. This book was released on 2011-04-08 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Similarities, differences, advantages and limitations of perturbation techniques are pointed out concisely. The techniques are described by means of examples that consist mainly of algebraic and ordinary differential equations. Each chapter contains a number of exercises.

Book The Energy Method  Stability  and Nonlinear Convection

Download or read book The Energy Method Stability and Nonlinear Convection written by Brian Straughan and published by Springer Science & Business Media. This book was released on 2013-04-09 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Six new chapters (14-19) deal with topics of current interest: multi-component convection diffusion, convection in a compressible fluid, convenction with temperature dependent viscosity and thermal conductivity, penetrative convection, nonlinear stability in ocean circulation models, and numerical solution of eigenvalue problems.

Book Multiple Scale and Singular Perturbation Methods

Download or read book Multiple Scale and Singular Perturbation Methods written by J.K. Kevorkian and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 642 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.

Book Random Perturbation Methods with Applications in Science and Engineering

Download or read book Random Perturbation Methods with Applications in Science and Engineering written by Anatoli V. Skorokhod and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.

Book Nonlinear Dynamics of Rotating Shallow Water  Methods and Advances

Download or read book Nonlinear Dynamics of Rotating Shallow Water Methods and Advances written by and published by Elsevier. This book was released on 2007-04-03 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wave emission, the role of essentially nonlinear wave phenomena. The specificity of the book is that analytical, numerical, and experimental approaches are presented together and complement each other. Special attention is paid on explaining the methodology, e.g. multiple time-scale asymptotic expansions, averaging and removal of resonances, in what concerns theory, high-resolution finite-volume schemes, in what concerns numerical simulations, and turntable experiments with stratified fluids, in what concerns laboratory simulations. A general introduction into GFD is given at the beginning to introduce the problematics for non-specialists. At the same time, recent new results on nonlinear geostrophic adjustment, nonlinear waves, and equatorial dynamics, including some exact results on the existence of the slow manifold, wave breaking, and nonlinear wave solutions are presented for the first time in a systematic manner. · Incorporates analytical, numerical and experimental approaches in the geophysical fluid dynamics context· Combination of essentials in GFD, of the description of analytical, numerical and experimental methods (tutorial part), and new results obtained by these methods (original part)· Provides the link between GFD and mechanics (averaging method, the method of normal forms); GFD and nonlinear physics (shocks, solitons, modons, anomalous transport, periodic nonlinear waves)

Book Nonlinear Problems of Elasticity

Download or read book Nonlinear Problems of Elasticity written by Stuart Antman and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 762 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scientists of the seventeenth and eighteenth centuries, led by Jas. Bernoulli and Euler, created a coherent theory of the mechanics of strings and rods undergoing planar deformations. They introduced the basic con cepts of strain, both extensional and flexural, of contact force with its com ponents of tension and shear force, and of contact couple. They extended Newton's Law of Motion for a mass point to a law valid for any deformable body. Euler formulated its independent and much subtler complement, the Angular Momentum Principle. (Euler also gave effective variational characterizations of the governing equations. ) These scientists breathed life into the theory by proposing, formulating, and solving the problems of the suspension bridge, the catenary, the velaria, the elastica, and the small transverse vibrations of an elastic string. (The level of difficulty of some of these problems is such that even today their descriptions are sel dom vouchsafed to undergraduates. The realization that such profound and beautiful results could be deduced by mathematical reasoning from fundamental physical principles furnished a significant contribution to the intellectual climate of the Age of Reason. ) At first, those who solved these problems did not distinguish between linear and nonlinear equations, and so were not intimidated by the latter. By the middle of the nineteenth century, Cauchy had constructed the basic framework of three-dimensional continuum mechanics on the founda tions built by his eighteenth-century predecessors.

Book Nonlinear Theory of Shallow Shells

Download or read book Nonlinear Theory of Shallow Shells written by Iosif I. Vorovich and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents rigorous treatment of boundary value problems in nonlinear theory of shallow shells. The consideration of the problems is carried out using methods of nonlinear functional analysis.