Download or read book A Primer of Algebraic D Modules written by S. C. Coutinho and published by Cambridge University Press. This book was released on 1995-09-07 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
Download or read book Algebraic D modules written by Armand Borel and published by . This book was released on 1987 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented here are recent developments in the algebraic theory of D-modules. The book contains an exposition of the basic notions and operations of D-modules, of special features of coherent, holonomic, and regular holonomic D-modules, and of the Riemann-Hilbert correspondence. The theory of Algebraic D-modules has found remarkable applications outside of analysis proper, in particular to infinite dimensional representations of semisimple Lie groups, to representations of Weyl groups, and to algebraic geometry.
Download or read book D Modules Perverse Sheaves and Representation Theory written by Ryoshi Hotta and published by Springer Science & Business Media. This book was released on 2007-11-07 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.
Download or read book D modules and Microlocal Calculus written by Masaki Kashiwara and published by American Mathematical Soc.. This book was released on 2003 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masaki Kashiwara is undoubtedly one of the masters of the theory of $D$-modules, and he has created a good, accessible entry point to the subject. The theory of $D$-modules is a very powerful point of view, bringing ideas from algebra and algebraic geometry to the analysis of systems of differential equations. It is often used in conjunction with microlocal analysis, as some of the important theorems are best stated or proved using these techniques. The theory has been used very successfully in applications to representation theory. Here, there is an emphasis on $b$-functions. These show up in various contexts: number theory, analysis, representation theory, and the geometry and invariants of prehomogeneous vector spaces. Some of the most important results on $b$-functions were obtained by Kashiwara. A hot topic from the mid '70s to mid '80s, it has now moved a bit more into the mainstream. Graduate students and research mathematicians will find that working on the subject in the two-decade interval has given Kashiwara a very good perspective for presenting the topic to the general mathematical public.
Download or read book Regular and Irregular Holonomic D Modules written by Masaki Kashiwara and published by Cambridge University Press. This book was released on 2016-05-26 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified treatment of the Riemann-Hilbert correspondence for (not necessarily regular) holonomic D-modules using indsheaves.
Download or read book Algebraic Approach to Differential Equations written by D?ng Tr ng L and published by World Scientific. This book was released on 2010 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixing elementary results and advanced methods, Algebraic Approach to Differential Equations aims to accustom differential equation specialists to algebraic methods in this area of interest. It presents material from a school organized by The Abdus Salam International Centre for Theoretical Physics (ICTP), the Bibliotheca Alexandrina, and the International Centre for Pure and Applied Mathematics (CIMPA).
Download or read book Integral Closure of Ideals Rings and Modules written by Craig Huneke and published by Cambridge University Press. This book was released on 2006-10-12 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for graduate students and researchers, this book presents a unified treatment of the central notions of integral closure.
Download or read book Fundamentals of Algebraic Microlocal Analysis written by Goro Kato and published by CRC Press. This book was released on 2020-08-11 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Provides a thorough introduction to the algebraic theory of systems of differential equations, as developed by the Japanese school of M. Sato and his colleagues. Features a complete review of hyperfunction-microfunction theory and the theory of D-modules. Strikes the perfect balance between analytic and algebraic aspects."
Download or read book De Rham Cohomology of Differential Modules on Algebraic Varieties written by Yves André and published by Birkhäuser. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: "...A nice feature of the book [is] that at various points the authors provide examples, or rather counterexamples, that clearly show what can go wrong...This is a nicely-written book [that] studies algebraic differential modules in several variables." --Mathematical Reviews
Download or read book Gr bner Deformations of Hypergeometric Differential Equations written by Mutsumi Saito and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of Gröbner bases is a main tool for dealing with rings of differential operators. This book reexamines the concept of Gröbner bases from the point of view of geometric deformations. The algorithmic methods introduced in this book are particularly useful for studying the systems of multidimensional hypergeometric PDE's introduced by Gelfand, Kapranov, and Zelevinsky. A number of original research results are contained in the book, and many open problems are raised for future research in this rapidly growing area of computational mathematics.
Download or read book Vertex Algebras and Algebraic Curves written by Edward Frenkel and published by American Mathematical Soc.. This book was released on 2004-08-25 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Download or read book Model Theory and Modules written by Mike Prest and published by Cambridge University Press. This book was released on 1988-02-25 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years the interplay between model theory and other branches of mathematics has led to many deep and intriguing results. In this, the first book on the topic, the theme is the interplay between model theory and the theory of modules. The book is intended to be a self-contained introduction to the subject and introduces the requisite model theory and module theory as it is needed. Dr Prest develops the basic ideas concerning what can be said about modules using the information which may be expressed in a first-order language. Later chapters discuss stability-theoretic aspects of modules, and structure and classification theorems over various types of rings and for certain classes of modules. Both algebraists and logicians will enjoy this account of an area in which algebra and model theory interact in a significant way. The book includes numerous examples and exercises and consequently will make an ideal introduction for graduate students coming to this subject for the first time.
Download or read book Mixed Hodge Structures written by Chris A.M. Peters and published by Springer Science & Business Media. This book was released on 2008-02-27 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is comprehensive basic monograph on mixed Hodge structures. Building up from basic Hodge theory the book explains Delingne's mixed Hodge theory in a detailed fashion. Then both Hain's and Morgan's approaches to mixed Hodge theory related to homotopy theory are sketched. Next comes the relative theory, and then the all encompassing theory of mixed Hodge modules. The book is interlaced with chapters containing applications. Three large appendices complete the book.
Download or read book Hodge Ideals written by Mircea Mustaţă and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors use methods from birational geometry to study the Hodge filtration on the localization along a hypersurface. This filtration leads to a sequence of ideal sheaves, called Hodge ideals, the first of which is a multiplier ideal. They analyze their local and global properties, and use them for applications related to the singularities and Hodge theory of hypersurfaces and their complements.
Download or read book Foundations of Module and Ring Theory written by Robert Wisbauer and published by Routledge. This book was released on 2018-05-11 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Download or read book Commutative Algebra written by David Eisenbud and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a comprehensive review of commutative algebra, from localization and primary decomposition through dimension theory, homological methods, free resolutions and duality, emphasizing the origins of the ideas and their connections with other parts of mathematics. The book gives a concise treatment of Grobner basis theory and the constructive methods in commutative algebra and algebraic geometry that flow from it. Many exercises included.
Download or read book Lectures on Logarithmic Algebraic Geometry written by Arthur Ogus and published by Cambridge University Press. This book was released on 2018-11-08 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to logarithmic geometry, a key tool for analyzing compactification and degeneration in algebraic geometry.