EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Algebraic Approach to Simple Quantum Systems

Download or read book Algebraic Approach to Simple Quantum Systems written by Barry G. Adams and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the use of algebraic methods and sym bolic computation for simple quantum systems with applications to large order perturbation theory. It is the first book to integrate Lie algebras, algebraic perturbation theory and symbolic computation in a form suitable for students and researchers in theoretical and computational chemistry and is conveniently divided into two parts. The first part, Chapters 1 to 6, provides a pedagogical introduction to the important Lie algebras so(3), so(2,1), so(4) and so(4,2) needed for the study of simple quantum systems such as the D-dimensional hydrogen atom and harmonic oscillator. This material is suitable for advanced undergraduate and beginning graduate students. Of particular importance is the use of so(2,1) in Chapter 4 as a spectrum generating algebra for several important systems such as the non-relativistic hydrogen atom and the relativistic Klein-Gordon and Dirac equations. This approach provides an interesting and important alternative to the usual textbook approach using series solutions of differential equations.

Book Quantum Mechanics in Simple Matrix Form

Download or read book Quantum Mechanics in Simple Matrix Form written by Thomas F. Jordan and published by Courier Corporation. This book was released on 2012-05-23 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Includes more than 100 problems and 38 figures. 1986 edition.

Book Quantum Logic in Algebraic Approach

Download or read book Quantum Logic in Algebraic Approach written by Miklós Rédei and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work has grown out of the lecture notes that were prepared for a series of seminars on some selected topics in quantum logic. The seminars were delivered during the first semester of the 1993/1994 academic year in the Unit for Foundations of Science of the Department of History and Foundations of Mathematics and Science, Faculty of Physics, Utrecht University, The Netherlands, while I was staying in that Unit on a European Community Research Grant, and in the Center for Philosophy of Science, University of Pittsburgh, U. S. A. , where I was staying during the 1994/1995 academic year as a Visiting Fellow on a Fulbright Research Grant, and where I also was supported by the Istvan Szechenyi Scholarship Foundation. The financial support provided by these foundations, by the Center for Philosophy of Science and by the European Community is greatly acknowledged, and I wish to thank D. Dieks, the professor of the Foundations Group in Utrecht and G. Massey, the director of the Center for Philosophy of Science in Pittsburgh for making my stay at the respective institutions possible. I also wish to thank both the members of the Foundations Group in Utrecht, especially D. Dieks, C. Lutz, F. Muller, J. Uffink and P. Vermaas and the participants in the seminars at the Center for Philosophy of Science in Pittsburgh, especially N. Belnap, J. Earman, A. Janis, J. Norton, and J.

Book Algebraic Methods in Quantum Chemistry and Physics

Download or read book Algebraic Methods in Quantum Chemistry and Physics written by Francisco M. Fernandez and published by CRC Press. This book was released on 1995-10-24 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Book The Logico Algebraic Approach to Quantum Mechanics

Download or read book The Logico Algebraic Approach to Quantum Mechanics written by C.A. Hooker and published by Springer Science & Business Media. This book was released on 1979-05-31 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twentieth century has witnessed a striking transformation in the understanding of the theories of mathematical physics. There has emerged clearly the idea that physical theories are significantly characterized by their abstract mathematical structure. This is in opposition to the tradi tional opinion that one should look to the specific applications of a theory in orrter to understand it. One might with reason now espouse the view that to understand the deeper character of a theory one must know its abstract structure and understand the significance of that structure, while to understand how a theory might be modified in light of its experimental inadequacies one must be intimately acquainted with how it is applied. Quantum theory itself has gone through a development this century which illustrates strikingly the shifting perspective. From a collection of intuitive physical manoeuvers under Bohr, through a formative stage in which the mathematical framework was bifurcated (between Schrodinger and Heisenberg) to an elegant culmination in von Neumann's Hilbert space formulation, the elementary theory moved, flanked even at this later stage by the ill-understood formalisms for the relativistic version and for the field-theoretic alternative; after that we have a gradual, but constant, elaboration of all these quantal theories as abstract mathematical structures (their point of departure being von Neumann's formalism) until at the present time theoretical work is heavily preoccupied with the manipulation of purely abstract structures.

Book Basic Notions Of Condensed Matter Physics

Download or read book Basic Notions Of Condensed Matter Physics written by Philip W. Anderson and published by CRC Press. This book was released on 2018-03-09 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.

Book Algebraic Methods in Quantum Chemistry and Physics

Download or read book Algebraic Methods in Quantum Chemistry and Physics written by Francisco M. Fernandez and published by CRC Press. This book was released on 2020-01-16 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Book Factorization Method in Quantum Mechanics

Download or read book Factorization Method in Quantum Mechanics written by Shi-Hai Dong and published by Springer Science & Business Media. This book was released on 2007-04-01 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the factorization method in quantum mechanics at an advanced level, with the aim of putting mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the reader’s disposal. For this purpose, the text provides a comprehensive description of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in quantum mechanics textbooks.

Book Introduction to Algebraic and Constructive Quantum Field Theory

Download or read book Introduction to Algebraic and Constructive Quantum Field Theory written by John C. Baez and published by Princeton University Press. This book was released on 2014-07-14 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present a rigorous treatment of the first principles of the algebraic and analytic core of quantum field theory. Their aim is to correlate modern mathematical theory with the explanation of the observed process of particle production and of particle-wave duality that heuristic quantum field theory provides. Many topics are treated here in book form for the first time, from the origins of complex structures to the quantization of tachyons and domains of dependence for quantized wave equations. This work begins with a comprehensive analysis, in a universal format, of the structure and characterization of free fields, which is illustrated by applications to specific fields. Nonlinear local functions of both free fields (or Wick products) and interacting fields are established mathematically in a way that is consistent with the basic physical constraints and practice. Among other topics discussed are functional integration, Fourier transforms in Hilbert space, and implementability of canonical transformations. The authors address readers interested in fundamental mathematical physics and who have at least the training of an entering graduate student. A series of lexicons connects the mathematical development with the underlying physical motivation or interpretation. The examples and problems illustrate the theory and relate it to the scientific literature. Originally published in 1992. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Book Shattered Symmetry

    Book Details:
  • Author : Pieter Thyssen
  • Publisher : Oxford University Press
  • Release : 2017-01-02
  • ISBN : 0190611405
  • Pages : 529 pages

Download or read book Shattered Symmetry written by Pieter Thyssen and published by Oxford University Press. This book was released on 2017-01-02 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: The standard model of subatomic particles and the periodic table of the atoms have the common goal to bring order in the bewildering chaos of the constituents of matter. Their success relies on the presence of fundamental symmetries in their core. The purpose of the book is to share the admiration for the power and the beauty of these symmetries. The reader is taken on a journey from the basic geometric symmetry group of a circle to the sublime dynamic symmetries that govern the motions of the particles. The trail follows the lines of parentage linking groups upstream to the unitary symmetry of the eightfold way of quarks, and to the four-dimensional symmetry of the hydrogen atom. Along the way the theory of symmetry groups is gradually introduced with special emphasis on graphical representations. The final challenge is to open up the structure of Mendeleev's table which goes beyond the symmetry of the hydrogen atom. Breaking this symmetry to accommodate the multi-electron atoms requires to leave the common ground of linear algebras and explore the potential of non-linearity.

Book The Supersymmetric Dirac Equation

Download or read book The Supersymmetric Dirac Equation written by Allen Hirshfeld and published by World Scientific. This book was released on 2012 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The solution of the Dirac equation for an electron in a Coulomb field is systematically treated here by utilizing new insights provided by supersymmetry. It is shown that each of the concepts has its analogue in the non-relativistic case. Indeed, the non-relativistic case is developed first, in order to introduce the new concepts in a familiar context. The symmetry of the non-relativistic model is already present in the classical limit, so the classical Kepler problem is first discussed in order to bring out the role played by the Laplace vector, one of the central concepts of the whole book. Analysis of the concept of eccentricity of the orbits turns out to be essential to understanding the relation of the classical and quantum mechanical models. The opportunity is taken to relive the great moments of physics: From Kepler's discovery of the laws of motion of the planets the development is traced through the Dirac equation up to modern advances, which bring the concepts of supersymmetry to bear on the derivation of the solutions.

Book Introduction To The Mathematical Structure Of Quantum Mechanics  An  A Short Course For Mathematicians

Download or read book Introduction To The Mathematical Structure Of Quantum Mechanics An A Short Course For Mathematicians written by Franco Strocchi and published by World Scientific Publishing Company. This book was released on 2005-11-17 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. Rather than starting from the Dirac-Von Neumann axioms, the book offers a short presentation of the mathematical structure of QM using the C--algebraic structure of the observable based on the operational definition of measurements and the duality between states and observables. The description of states and observables as Hilbert space vectors and operators is then derived from the GNS and Gelfand-Naimark Theorems.For finite degrees of freedom, the Weyl algebra codifies the experimental limitations on the measurements of position and momentum (Heisenberg uncertainty relations) and Schroedinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the differential operator describing the Hamiltonian and solved by the Rellich-Kato theorems. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), the formulation in terms of ground state correlations (Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle as an example of the interplay between topology and functional integral is also discussed in detail.

Book Introduction To The Mathematical Structure Of Quantum Mechanics  An  A Short Course For Mathematicians  2nd Edition

Download or read book Introduction To The Mathematical Structure Of Quantum Mechanics An A Short Course For Mathematicians 2nd Edition written by Franco Strocchi and published by World Scientific Publishing Company. This book was released on 2008-10-30 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second printing contains a critical discussion of Dirac derivation of canonical quantization, which is instead deduced from general geometric structures. This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. The mathematical structure of QM is formulated in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables, for a general physical system.The Dirac-von Neumann axioms are then derived. The description of states and observables as Hilbert space vectors and operators follows from the GNS and Gelfand-Naimark Theorems. The experimental existence of complementary observables for atomic systems is shown to imply the noncommutativity of the observable algebra, the distinctive feature of QM; for finite degrees of freedom, the Weyl algebra codifies the experimental complementarity of position and momentum (Heisenberg commutation relations) and Schrödinger QM follows from the von Neumann uniqueness theorem.The existence problem of the dynamics is related to the self-adjointness of the Hamiltonian and solved by the Kato-Rellich conditions on the potential, which also guarantee quantum stability for classically unbounded-below Hamiltonians. Examples are discussed which include the explanation of the discreteness of the atomic spectra.Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), to the formulation in terms of ground state correlations (the quantum mechanical analog of the Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle is discussed in detail, as an example of the interplay between topology and functional integral, leading to the emergence of superselection rules and θ sectors.

Book Advances in Quantum Chemistry

Download or read book Advances in Quantum Chemistry written by and published by Academic Press. This book was released on 2009-06-20 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Quantum Chemistry presents surveys of current developments in this rapidly developing field. With invited reviews written by leading international researchers, each presenting new results, it provides a single vehicle for following progress in this interdisciplinary area. - Publishes articles, invited reviews and proceedings of major international conferences and workshops - Written by leading international researchers in quantum and theoretical chemistry - Highlights important interdisciplinary developments

Book Algebraic Methods in Statistical Mechanics and Quantum Field Theory

Download or read book Algebraic Methods in Statistical Mechanics and Quantum Field Theory written by Dr. Gérard G. Emch and published by Courier Corporation. This book was released on 2014-08-04 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This systematic algebraic approach offers a careful formulation of the problems' physical motivations as well as self-contained descriptions of the mathematical methods for arriving at solutions. 1972 edition.

Book New Methods in Computational Quantum Mechanics

Download or read book New Methods in Computational Quantum Mechanics written by Ilya Prigogine and published by John Wiley & Sons. This book was released on 2009-09-09 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. This stand-alone work presents the cutting edge of research in computational quantum mechanics. Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: * Quantum Monte Carlo methods in chemistry * Monte Carlo methods for real-time path integration * The Redfield equation in condensed-phase quantum dynamics * Path-integral centroid methods in quantum statistical mechanics and dynamics * Multiconfigurational perturbation theory-applications in electronic spectroscopy * Electronic structure calculations for molecules containing transition metals * And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultät für Physik, Universität Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P. FÜLSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-ÅKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHán, Departamento de Química Física, Universitat de Valéncia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica della Materia, Unità di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJÖRN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRÉS, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut für Organische Chemie, Universität Zürich, Zürich, Switzerland GREGORY A. VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physi

Book C  Algebras and Mathematical Foundations of Quantum Statistical Mechanics

Download or read book C Algebras and Mathematical Foundations of Quantum Statistical Mechanics written by Jean-Bernard Bru and published by Springer Nature. This book was released on 2023-06-16 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to the mathematical foundations of quantum statistical physics. It presents a conceptually profound yet technically accessible path to the C*-algebraic approach to quantum statistical mechanics, demonstrating how key aspects of thermodynamic equilibrium can be derived as simple corollaries of classical results in convex analysis. Using C*-algebras as examples of ordered vector spaces, this book makes various aspects of C*-algebras and their applications to the mathematical foundations of quantum theory much clearer from both mathematical and physical perspectives. It begins with the simple case of Gibbs states on matrix algebras and gradually progresses to a more general setting that considers the thermodynamic equilibrium of infinitely extended quantum systems. The book also illustrates how first-order phase transitions and spontaneous symmetry breaking can occur, in contrast to the finite-dimensional situation. One of the unique features of this book is its thorough and clear treatment of the theory of equilibrium states of quantum mean-field models. This work is self-contained and requires only a modest background in analysis, topology, and functional analysis from the reader. It is suitable for both mathematicians and physicists with a specific interest in quantum statistical physics.