Download or read book Algebra Geometry and Their Interactions written by Alberto Corso and published by American Mathematical Soc.. This book was released on 2007 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume's papers present work at the cutting edge of current research in algebraic geometry, commutative algebra, numerical analysis, and other related fields, with an emphasis on the breadth of these areas and the beneficial results obtained by the interactions between these fields. This collection of two survey articles and sixteen refereed research papers, written by experts in these fields, gives the reader a greater sense of some of the directions in which this research is moving, as well as a better idea of how these fields interact with each other and with other applied areas. The topics include blowup algebras, linkage theory, Hilbert functions, divisors, vector bundles, determinantal varieties, (square-free) monomial ideals, multiplicities and cohomological degrees, and computer vision.
Download or read book Connections Between Algebra Combinatorics and Geometry written by Susan M. Cooper and published by Springer. This book was released on 2014-05-16 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Commutative algebra, combinatorics, and algebraic geometry are thriving areas of mathematical research with a rich history of interaction. Connections Between Algebra and Geometry contains lecture notes, along with exercises and solutions, from the Workshop on Connections Between Algebra and Geometry held at the University of Regina from May 29-June 1, 2012. It also contains research and survey papers from academics invited to participate in the companion Special Session on Interactions Between Algebraic Geometry and Commutative Algebra, which was part of the CMS Summer Meeting at the University of Regina held June 2–3, 2012, and the meeting Further Connections Between Algebra and Geometry, which was held at the North Dakota State University February 23, 2013. This volume highlights three mini-courses in the areas of commutative algebra and algebraic geometry: differential graded commutative algebra, secant varieties, and fat points and symbolic powers. It will serve as a useful resource for graduate students and researchers who wish to expand their knowledge of commutative algebra, algebraic geometry, combinatorics, and the intricacies of their intersection.
Download or read book Algebraic Combinatorics and Coinvariant Spaces written by Francois Bergeron and published by CRC Press. This book was released on 2009-07-06 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for graduate students in mathematics or non-specialist mathematicians who wish to learn the basics about some of the most important current research in the field, this book provides an intensive, yet accessible, introduction to the subject of algebraic combinatorics. After recalling basic notions of combinatorics, representation theory, and
Download or read book Commutative Algebra and its Interactions to Algebraic Geometry written by Nguyen Tu CUONG and published by Springer. This book was released on 2018-08-02 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents four lectures on recent research in commutative algebra and its applications to algebraic geometry. Aimed at researchers and graduate students with an advanced background in algebra, these lectures were given during the Commutative Algebra program held at the Vietnam Institute of Advanced Study in Mathematics in the winter semester 2013 -2014. The first lecture is on Weyl algebras (certain rings of differential operators) and their D-modules, relating non-commutative and commutative algebra to algebraic geometry and analysis in a very appealing way. The second lecture concerns local systems, their homological origin, and applications to the classification of Artinian Gorenstein rings and the computation of their invariants. The third lecture is on the representation type of projective varieties and the classification of arithmetically Cohen -Macaulay bundles and Ulrich bundles. Related topics such as moduli spaces of sheaves, liaison theory, minimal resolutions, and Hilbert schemes of points are also covered. The last lecture addresses a classical problem: how many equations are needed to define an algebraic variety set-theoretically? It systematically covers (and improves) recent results for the case of toric varieties.
Download or read book Geometry of the Fundamental Interactions written by M. D. Maia and published by Springer Science & Business Media. This book was released on 2011-06-14 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.
Download or read book Model Theory and Algebraic Geometry written by Elisabeth Bouscaren and published by Springer. This book was released on 2009-03-14 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Download or read book Interactions between Homotopy Theory and Algebra written by Luchezar L. Avramov and published by American Mathematical Soc.. This book was released on 2007 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on talks presented at the Summer School on Interactions between Homotopy theory and Algebra held at the University of Chicago in the summer of 2004. The goal of this book is to create a resource for background and for current directions of research related to deep connections between homotopy theory and algebra, including algebraic geometry, commutative algebra, and representation theory. The articles in this book are aimed at the audience of beginning researchers with varied mathematical backgrounds and have been written with both the quality of exposition and the accessibility to novices in mind.
Download or read book Polytopes Rings and K Theory written by Winfried Bruns and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines interactions of polyhedral discrete geometry and algebra. What makes this book unique is the presentation of several central results in all three areas of the exposition - from discrete geometry, to commutative algebra, and K-theory.
Download or read book Finite Fields and Applications written by Gary L. Mullen and published by American Mathematical Soc.. This book was released on 2008 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Eighth International Conference on Finite Fields and Applications, held in Melbourne, Australia, July 9-13, 2007. It contains 5 invited survey papers as well as original research articles covering various theoretical and applied areas related to finite fields.Finite fields, and the computational and algorithmic aspects of finite field problems, continue to grow in importance and interest in the mathematical and computer science communities because of their applications in so many diverse areas. In particular, finite fields now play very important roles in number theory, algebra, and algebraic geometry, as well as in computer science, statistics, and engineering. Areas of application include algebraic coding theory, cryptology, and combinatorialdesign theory.
Download or read book Sheaves on Manifolds written by Masaki Kashiwara and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sheaf Theory is modern, active field of mathematics at the intersection of algebraic topology, algebraic geometry and partial differential equations. This volume offers a comprehensive and self-contained treatment of Sheaf Theory from the basis up, with emphasis on the microlocal point of view. From the reviews: "Clearly and precisely written, and contains many interesting ideas: it describes a whole, largely new branch of mathematics." –Bulletin of the L.M.S.
Download or read book Several Complex Variables with Connections to Algebraic Geometry and Lie Groups written by Joseph L. Taylor and published by American Mathematical Soc.. This book was released on 2002 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents an integrated development of core material from several complex variables and complex algebraic geometry, leading to proofs of Serre's celebrated GAGA theorems relating the two subjects, and including applications to the representation theory of complex semisimple Lie groups. It includes a thorough treatment of the local theory using the tools of commutative algebra, an extensive development of sheaf theory and the theory of coherent analytic and algebraicsheaves, proofs of the main vanishing theorems for these categories of sheaves, and a complete proof of the finite dimensionality of the cohomology of coherent sheaves on compact varieties. The vanishing theorems have a wide variety of applications and these are covered in detail. Of particular interest arethe last three chapters, which are devoted to applications of the preceding material to the study of the structure theory and representation theory of complex semisimple Lie groups. Included are introductions to harmonic analysis, the Peter-Weyl theorem, Lie theory and the structure of Lie algebras, semisimple Lie algebras and their representations, algebraic groups and the structure of complex semisimple Lie groups. All of this culminates in Milicic's proof of the Borel-Weil-Bott theorem,which makes extensive use of the material developed earlier in the text. There are numerous examples and exercises in each chapter. This modern treatment of a classic point of view would be an excellent text for a graduate course on several complex variables, as well as a useful reference for theexpert.
Download or read book Quantization Geometry and Noncommutative Structures in Mathematics and Physics written by Alexander Cardona and published by Springer. This book was released on 2017-10-26 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents various ongoing approaches to the vast topic of quantization, which is the process of forming a quantum mechanical system starting from a classical one, and discusses their numerous fruitful interactions with mathematics.The opening chapter introduces the various forms of quantization and their interactions with each other and with mathematics.A first approach to quantization, called deformation quantization, consists of viewing the Planck constant as a small parameter. This approach provides a deformation of the structure of the algebra of classical observables rather than a radical change in the nature of the observables. When symmetries come into play, deformation quantization needs to be merged with group actions, which is presented in chapter 2, by Simone Gutt.The noncommutativity arising from quantization is the main concern of noncommutative geometry. Allowing for the presence of symmetries requires working with principal fiber bundles in a non-commutative setup, where Hopf algebras appear naturally. This is the topic of chapter 3, by Christian Kassel. Nichols algebras, a special type of Hopf algebras, are the subject of chapter 4, by Nicolás Andruskiewitsch. The purely algebraic approaches given in the previous chapters do not take the geometry of space-time into account. For this purpose a special treatment using a more geometric point of view is required. An approach to field quantization on curved space-time, with applications to cosmology, is presented in chapter 5 in an account of the lectures of Abhay Ashtekar that brings a complementary point of view to non-commutativity.An alternative quantization procedure is known under the name of string theory. In chapter 6 its supersymmetric version is presented. Superstrings have drawn the attention of many mathematicians, due to its various fruitful interactions with algebraic geometry, some of which are described here. The remaining chapters discuss further topics, as the Batalin-Vilkovisky formalism and direct products of spectral triples.This volume addresses both physicists and mathematicians and serves as an introduction to ongoing research in very active areas of mathematics and physics at the border line between geometry, topology, algebra and quantum field theory.
Download or read book The Interaction of Analysis and Geometry written by Victor I. Burenkov and published by American Mathematical Soc.. This book was released on 2007 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."
Download or read book Algebraic Geometry written by Joe Harris and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book succeeds brilliantly by concentrating on a number of core topics...and by treating them in a hugely rich and varied way. The author ensures that the reader will learn a large amount of classical material and perhaps more importantly, will also learn that there is no one approach to the subject. The essence lies in the range and interplay of possible approaches. The author is to be congratulated on a work of deep and enthusiastic scholarship." --MATHEMATICAL REVIEWS
Download or read book Singularities and Their Interaction with Geometry and Low Dimensional Topology written by Javier Fernández de Bobadilla and published by Springer Nature. This book was released on 2021-05-27 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of surveys and original research articles concentrating on new perspectives and research directions at the crossroads of algebraic geometry, topology, and singularity theory. The papers, written by leading researchers working on various topics of the above fields, are the outcome of the “Némethi60: Geometry and Topology of Singularities” conference held at the Alfréd Rényi Institute of Mathematics in Budapest, from May 27 to 31, 2019. Both the conference and this resulting volume are in honor of Professor András Némethi, on the occasion of his 60th birthday, whose work plays a decisive and influential role in the interactions between the above fields. The book should serve as a valuable resource for graduate students and researchers to deepen the new perspectives, methods, and connections between geometry and topology regarding singularities.
Download or read book Combinatorial Structures in Algebra and Geometry written by Dumitru I. Stamate and published by Springer Nature. This book was released on 2020-09-01 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume presents selected, peer-reviewed contributions from the 26th National School on Algebra, which was held in Constanța, Romania, on August 26-September 1, 2018. The works cover three fields of mathematics: algebra, geometry and discrete mathematics, discussing the latest developments in the theory of monomial ideals, algebras of graphs and local positivity of line bundles. Whereas interactions between algebra and geometry go back at least to Hilbert, the ties to combinatorics are much more recent and are subject of immense interest at the forefront of contemporary mathematics research. Transplanting methods between different branches of mathematics has proved very fruitful in the past – for example, the application of fixed point theorems in topology to solving nonlinear differential equations in analysis. Similarly, combinatorial structures, e.g., Newton-Okounkov bodies, have led to significant advances in our understanding of the asymptotic properties of line bundles in geometry and multiplier ideals in algebra. This book is intended for advanced graduate students, young scientists and established researchers with an interest in the overlaps between different fields of mathematics. A volume for the 24th edition of this conference was previously published with Springer under the title "Multigraded Algebra and Applications" (ISBN 978-3-319-90493-1).
Download or read book An Undergraduate Primer in Algebraic Geometry written by Ciro Ciliberto and published by Springer Nature. This book was released on 2021-05-05 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of two parts. The first is devoted to an introduction to basic concepts in algebraic geometry: affine and projective varieties, some of their main attributes and examples. The second part is devoted to the theory of curves: local properties, affine and projective plane curves, resolution of singularities, linear equivalence of divisors and linear series, Riemann–Roch and Riemann–Hurwitz Theorems. The approach in this book is purely algebraic. The main tool is commutative algebra, from which the needed results are recalled, in most cases with proofs. The prerequisites consist of the knowledge of basics in affine and projective geometry, basic algebraic concepts regarding rings, modules, fields, linear algebra, basic notions in the theory of categories, and some elementary point–set topology. This book can be used as a textbook for an undergraduate course in algebraic geometry. The users of the book are not necessarily intended to become algebraic geometers but may be interested students or researchers who want to have a first smattering in the topic. The book contains several exercises, in which there are more examples and parts of the theory that are not fully developed in the text. Of some exercises, there are solutions at the end of each chapter.