EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Aero structural Design Investigations for Biplane Wind Turbine Blades

Download or read book Aero structural Design Investigations for Biplane Wind Turbine Blades written by Perry Moses Sablan Roth-Johnson and published by . This book was released on 2014 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large wind turbine blades are being developed at lengths of 85-125 meters, in order to improve energy capture and reduce the cost of wind energy. Bending loads in the inboard region of the blade make large blade development challenging. The "biplane blade" design was proposed to use a biplane inboard region to improve the design of the inboard region and improve overall performance of large blades. This work uses a "structures-first" approach with aero-structural analyses to (1) examine the feasibility of the biplane blade, (2) determine how the dimensions of the biplane inboard region affect performance, and (3) compare the aero-structural performance of a 100-meter biplane blade to the Sandia SNL100-00 reference blade. Two-dimensional CFD simulations were used to compare the aerodynamic performance of a biplane with a thick monoplane. The lift-to-drag ratio and the maximum lift coefficient is significantly greater for the biplane than the thick monoplane for angles of attack of 0-15 degrees. Analytical methods and beam finite elements with cross-sectional analysis were both used to examine the performance of biplane blade structures. These structures varied in complexity from isotropic spars to composite spars to composite full blades. In each case, biplane blade structures were compared to monoplane blade structures of the same length, mass, and complexity. Simple load cases were applied to each structure and their displacements, bending moments, axial forces, and stresses were compared. Similar performance trends are identified with both the analytical and computational models. Parametric analyses show that gap-to-chord ratios bewteen 1.0-1.2 and joint length-to-span ratios of about 0.5 give good aero-structural performance. At the tip, the biplane blade increases flapwise structural efficiency by 20-40%, depending on the load. Edgewise structural efficiency was decreased by 27-35% at the tip. The benefits for the inboard region could lead to mass reductions in wind turbine blades. Innovations that create lighter blades can make large blades a reality, suggesting that the biplane blade is an attractive design for large (100-meter) blades.

Book Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

Download or read book Aerodynamics and Optimal Design of Biplane Wind Turbine Blades written by Phillip Chiu and published by . This book was released on 2017 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under extreme conditions. Finally, considering these aerodynamic loads, the blade mass reductions achievable by biplane blades are quantified. The internal structure of the biplane blades are designed using a multi-disciplinary optimization which seeks to minimize mass, subject to constraints which represent realistic design requirements. Using this approach, it is shown that biplane blades can be built more than 45% lighter than a similarly-optimized conventional blade; the reasons for these mass reductions are examined in detail. As blade length is increased, these mass reductions are shown to be even more significant. These large mass reductions are indicative of significant cost of electricity reductions from rotors fitted with biplane blades. Taken together, these results show that biplane blades are a concept which can enable the next generation of larger wind turbine rotors.

Book Wind Energy Engineering

Download or read book Wind Energy Engineering written by Trevor Letcher and published by Academic Press. This book was released on 2017-05-11 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind Energy Engineering: A Handbook for Onshore and Offshore Wind Turbines is the most advanced, up-to-date and research-focused text on all aspects of wind energy engineering. Wind energy is pivotal in global electricity generation and for achieving future essential energy demands and targets. In this fast moving field this must-have edition starts with an in-depth look at the present state of wind integration and distribution worldwide, and continues with a high-level assessment of the advances in turbine technology and how the investment, planning, and economic infrastructure can support those innovations. Each chapter includes a research overview with a detailed analysis and new case studies looking at how recent research developments can be applied. Written by some of the most forward-thinking professionals in the field and giving a complete examination of one of the most promising and efficient sources of renewable energy, this book is an invaluable reference into this cross-disciplinary field for engineers. Contains analysis of the latest high-level research and explores real world application potential in relation to the developments Uses system international (SI) units and imperial units throughout to appeal to global engineers Offers new case studies from a world expert in the field Covers the latest research developments in this fast moving, vital subject

Book Investigation Into Integrated Free form and Precomputational Approaches for Aerostructural Optimization of Wind Turbine Blades

Download or read book Investigation Into Integrated Free form and Precomputational Approaches for Aerostructural Optimization of Wind Turbine Blades written by Ryan Timothy Barrett and published by . This book was released on 2018 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: A typical approach to optimize wind turbine blades separates the airfoil shape design from the blade planform design. This approach is sequential, where the airfoils along the blade span are pre-selected or optimized and then held constant during the blade planform optimization. In contrast, integrated blade design optimizes the airfoils and the blade planform concurrently and thereby has the potential to reduce cost of energy (COE) more than sequential design. Nevertheless, sequential design is commonly performed because of the ease of precomputation, or the ability to compute the airfoil analyses prior to the blade optimization. This research investigates two integrated blade design approaches, the precomputational and free-form methods, that are compared to sequential blade design.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Book Advances in Wind Turbine Blade Design and Materials

Download or read book Advances in Wind Turbine Blade Design and Materials written by Povl Brondsted and published by Elsevier. This book was released on 2013-10-31 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world's consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades.Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance of wind turbine blades. The final part of the book describes advances in wind turbine blade materials, development and testing, including biobased composites, surface protection and coatings, structural performance testing and the design, manufacture and testing of small wind turbine blades.Advances in wind turbine blade design and materials offers a comprehensive review of the recent advances and challenges encountered in wind turbine blade materials and design, and will provide an invaluable reference for researchers and innovators in the field of wind energy production, including materials scientists and engineers, wind turbine blade manufacturers and maintenance technicians, scientists, researchers and academics. - Reviews the design and functionality of wind turbine rotor blades - Examines the requirements and challenges for composite materials used in both current and future designs of wind turbine blades - Provides an invaluable reference for researchers and innovators in the field of wind energy production

Book Research and Technology Program Digest

Download or read book Research and Technology Program Digest written by United States. National Aeronautics and Space Administration and published by . This book was released on with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Wind Energy Aerodynamics

Download or read book Handbook of Wind Energy Aerodynamics written by Bernhard Stoevesandt and published by Springer Nature. This book was released on 2022-08-04 with total page 1495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook provides both a comprehensive overview and deep insights on the state-of-the-art methods used in wind turbine aerodynamics, as well as their advantages and limits. The focus of this work is specifically on wind turbines, where the aerodynamics are different from that of other fields due to the turbulent wind fields they face and the resultant differences in structural requirements. It gives a complete picture of research in the field, taking into account the different approaches which are applied. This book would be useful to professionals, academics, researchers and students working in the field.

Book Innovative Design Approaches for Large Wind Turbine Blades

Download or read book Innovative Design Approaches for Large Wind Turbine Blades written by and published by . This book was released on 2004 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Blade System Design Study (BSDS) was investigation and evaluation of design and manufacturing issues for wind turbine blades in the one to ten megawatt size range. A series of analysis tasks were completed in support of the design effort. We began with a parametric scaling study to assess blade structure using current technology. This was followed by an economic study of the cost to manufacture, transport and install large blades. Subsequently we identified several innovative design approaches that showed potential for overcoming fundamental physical and manufacturing constraints. The final stage of the project was used to develop several preliminary 50m blade designs. The key design impacts identified in this study are: (1) blade cross-sections, (2) alternative materials, (3) IEC design class, and (4) root attachment. The results show that thick blade cross-sections can provide a large reduction in blade weight, while maintaining high aerodynamic performance. Increasing blade thickness for inboard sections is a key method for improving structural efficiency and reducing blade weight. Carbon/glass hybrid blades were found to provide good improvements in blade weight, stiffness, and deflection when used in the main structural elements of the blade. The addition of carbon resulted in modest cost increases and provided significant benefits, particularly with respect to deflection. The change in design loads between IEC classes is quite significant. Optimized blades should be designed for each IEC design class. A significant portion of blade weight is related to the root buildup and metal hardware for typical root attachment designs. The results show that increasing the number of blade fasteners has a positive effect on total weight, because it reduces the required root laminate thickness.

Book Aeronautical Engineering

Download or read book Aeronautical Engineering written by and published by . This book was released on 1991 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bibliography of Scientific and Industrial Reports

Download or read book Bibliography of Scientific and Industrial Reports written by and published by . This book was released on 1947 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Research and Technology Program Digest Flash Index

Download or read book Research and Technology Program Digest Flash Index written by and published by . This book was released on 1967 with total page 794 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Structure Design for Wind Turbine Blade

Download or read book Structure Design for Wind Turbine Blade written by Wang Tongguang and published by . This book was released on 2019-04-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses the design and verification of composite materials and components. The blade is the basic and the most important component of wind turbine. Blade structure reliability is an important feature to ensure the safe operation of blades in a turbine. This book describes all aspects of blade structure design, including basic theories and design methods. It is invaluable for professionals, technical personnel, students and faculties.

Book NASA Scientific and Technical Publications

Download or read book NASA Scientific and Technical Publications written by and published by . This book was released on 1988 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Innovation in Wind Turbine Design

Download or read book Innovation in Wind Turbine Design written by Peter Jamieson and published by John Wiley & Sons. This book was released on 2018-03-12 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aktualisiert und erweiterte Neuauflage dieses umfassenden Leitfadens zu Innovationen in der Entwicklung von Windkraftanlagen Die 2. Auflage von Innovation in Wind Turbine Design beschäftigt sich im Detail mit den Designgrundlagen, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten. Die 2. Auflage wurde wesentlich erweitert und insgesamt aktualisiert. Neue Inhalte befassen sich mit den theoretischen Grundlagen von Antriebsscheiben in Bezug auf induktionsarme Rotoren. Wesentlich erweitert wurden die Abschnitte zu Offshore-Fragen und Flugwindkraftsystemen. Aktualisierte Inhalte beziehen sich auf Antriebsstränge und die grundlegende Theorie von Planetengetrieben und Differenzialgetrieben. Die Grundlagen der Windenergie und Irrtümer hinsichtlich des Designs von Rotoren mit Luftkanälen, Labor- und Feldtests der Rotorsysteme Katru und Wind Lens werden deutlicher herausgearbeitet. LiDAR wird kurz vorgestellt, ebenso die neuesten Entwicklungen beim Multi-Rotor-Konzept, darunter das Vier-Rotor-System von Vestas. Ein neues Kapitel beschäftigt sich mit dem innovativen DeepWind VAWT. Das Buch ist in vier Hauptabschnitte gegliedert: Hintergrundinformationen zu Designs, Technologiebewertung, Designthemen und innovative Technologiebeispiele. Wichtige Merkmale: - Stark erweiterte und um neue Inhalte ergänzt. - Deckt die Designgrundlagen umfassend ab, erläutert die Entscheidungsgründe für ein bestimmtes Design und beschreibt Methoden zur Bewertung innovativer Systeme und Komponenten. - Enthält innovative Beispiele aus der Praxis. - Jetzt mit Informationen zu den neuesten Entwicklungen in dem Fachgebiet. Dieses Buch ist ein Muss für Windkraftingenieure, Energieingenieure und Turbinenentwickler, Berater, Forscher und Studenten höherer Semester.

Book Aerodynamic  Structural and Aeroelastic Design of Wind Turbine Blades

Download or read book Aerodynamic Structural and Aeroelastic Design of Wind Turbine Blades written by Mohamed Kasem and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the negative impact of conventional energy resources that have been used worldwide, there is a demand for using other resources such as wind energy. Tons of researches have been applied around the globe on the process of designing and manufacturing wind energy conversion systems. In the present chapter, we are concentrating on wind turbine blades,Äô structural design process. The structural design of a wind turbine blade includes defining the wind turbine loads, selecting a suitable material, creating a structural model, and solving the model using the finite element method. This process will be repeated several times until a final design is achieved. The present chapter includes a discussion on the finite element method and wind turbine aeroelasticity.

Book U S  Government Research   Development Reports

Download or read book U S Government Research Development Reports written by and published by . This book was released on 1966-11 with total page 1014 pages. Available in PDF, EPUB and Kindle. Book excerpt: