EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Statistical Parametric Mapping  The Analysis of Functional Brain Images

Download or read book Statistical Parametric Mapping The Analysis of Functional Brain Images written by William D. Penny and published by Elsevier. This book was released on 2011-04-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible

Book Growing Adaptive Machines

Download or read book Growing Adaptive Machines written by Taras Kowaliw and published by Springer. This book was released on 2014-06-04 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: The pursuit of artificial intelligence has been a highly active domain of research for decades, yielding exciting scientific insights and productive new technologies. In terms of generating intelligence, however, this pursuit has yielded only limited success. This book explores the hypothesis that adaptive growth is a means of moving forward. By emulating the biological process of development, we can incorporate desirable characteristics of natural neural systems into engineered designs and thus move closer towards the creation of brain-like systems. The particular focus is on how to design artificial neural networks for engineering tasks. The book consists of contributions from 18 researchers, ranging from detailed reviews of recent domains by senior scientists, to exciting new contributions representing the state of the art in machine learning research. The book begins with broad overviews of artificial neurogenesis and bio-inspired machine learning, suitable both as an introduction to the domains and as a reference for experts. Several contributions provide perspectives and future hypotheses on recent highly successful trains of research, including deep learning, the Hyper NEAT model of developmental neural network design, and a simulation of the visual cortex. Other contributions cover recent advances in the design of bio-inspired artificial neural networks, including the creation of machines for classification, the behavioural control of virtual agents, the desi gn of virtual multi-component robots and morphologies and the creation of flexible intelligence. Throughout, the contributors share their vast expertise on the means and benefits of creating brain-like machines. This book is appropriate for advanced students and practitioners of artificial intelligence and machine learning.

Book Fundamentals of Brain Network Analysis

Download or read book Fundamentals of Brain Network Analysis written by Alex Fornito and published by Academic Press. This book was released on 2016-03-04 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain

Book Population Neuroscience

    Book Details:
  • Author : Tomas Paus
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-23
  • ISBN : 3642364500
  • Pages : 198 pages

Download or read book Population Neuroscience written by Tomas Paus and published by Springer Science & Business Media. This book was released on 2013-03-23 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is Newton’s brain different from Rembrandt’s? Does a mother’s diet during pregnancy impact brain growth? Do adolescent peers leave a signature in the social brain? Does the way we live in our middle years affect how our brains age? To answer these and many other questions, we can now turn to population neuroscience. Population neuroscience endeavors to identify environmental and genetic factors that shape the function and structure of the human brain; it uses the tools and knowledge of genetics (and the “omics” sciences), epidemiology and neuroscience. This text attempts to provide a bridge spanning these three disciplines so that their practitioners can communicate easily with each other when working together on large-scale imaging studies of the developing, mature and aging brain. By understanding the processes driving variations in brain function and structure across individuals, we will also be able to predict an individual’s risk of (or resilience against) developing a brain disorder. In the long term, the hope is that population neuroscience will lay the foundation for personalized preventive medicine and, in turn, reduce the burden associated with complex, chronic disorders of brain and body.

Book Active Inference

    Book Details:
  • Author : Thomas Parr
  • Publisher : MIT Press
  • Release : 2022-03-29
  • ISBN : 0262362287
  • Pages : 313 pages

Download or read book Active Inference written by Thomas Parr and published by MIT Press. This book was released on 2022-03-29 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive treatment of active inference, an integrative perspective on brain, cognition, and behavior used across multiple disciplines. Active inference is a way of understanding sentient behavior—a theory that characterizes perception, planning, and action in terms of probabilistic inference. Developed by theoretical neuroscientist Karl Friston over years of groundbreaking research, active inference provides an integrated perspective on brain, cognition, and behavior that is increasingly used across multiple disciplines including neuroscience, psychology, and philosophy. Active inference puts the action into perception. This book offers the first comprehensive treatment of active inference, covering theory, applications, and cognitive domains. Active inference is a “first principles” approach to understanding behavior and the brain, framed in terms of a single imperative to minimize free energy. The book emphasizes the implications of the free energy principle for understanding how the brain works. It first introduces active inference both conceptually and formally, contextualizing it within current theories of cognition. It then provides specific examples of computational models that use active inference to explain such cognitive phenomena as perception, attention, memory, and planning.

Book Micro   Meso  and Macro Connectomics of the Brain

Download or read book Micro Meso and Macro Connectomics of the Brain written by Henry Kennedy and published by Springer. This book was released on 2016-03-10 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.

Book Big Data in Psychiatry and Neurology

Download or read book Big Data in Psychiatry and Neurology written by Ahmed Moustafa and published by Academic Press. This book was released on 2021-06-11 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Psychiatry and Neurology provides an up-to-date overview of achievements in the field of big data in Psychiatry and Medicine, including applications of big data methods to aging disorders (e.g., Alzheimer's disease and Parkinson's disease), mood disorders (e.g., major depressive disorder), and drug addiction. This book will help researchers, students and clinicians implement new methods for collecting big datasets from various patient populations. Further, it will demonstrate how to use several algorithms and machine learning methods to analyze big datasets, thus providing individualized treatment for psychiatric and neurological patients. As big data analytics is gaining traction in psychiatric research, it is an essential component in providing predictive models for both clinical practice and public health systems. As compared with traditional statistical methods that provide primarily average group-level results, big data analytics allows predictions and stratification of clinical outcomes at an individual subject level. - Discusses longitudinal big data and risk factors surrounding the development of psychiatric disorders - Analyzes methods in using big data to treat psychiatric and neurological disorders - Describes the role machine learning can play in the analysis of big data - Demonstrates the various methods of gathering big data in medicine - Reviews how to apply big data to genetics

Book The Neurobiology of Schizophrenia

Download or read book The Neurobiology of Schizophrenia written by Ted Abel and published by Academic Press. This book was released on 2016-07-08 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Neurobiology of Schizophrenia begins with an overview of the various facets and levels of schizophrenia pathophysiology, ranging systematically from its genetic basis over changes in neurochemistry and electrophysiology to a systemic neural circuits level. When possible, the editors point out connections between the various systems. The editors also depict methods and research strategies used in the respective field. The individual backgrounds of the two editors promote a synthesis between basic neuroscience and clinical relevance. - Provides a comprehensive overview of neurobiological aspects of schizophrenia - Discusses schizophrenia at behavioral, cognitive, clinical, electrophysiological, molecular, and genetic levels - Edited by a translational researcher and a psychiatrist to promote synthesis between basic neuroscience and clinical relevance - Elucidates connections between the various systems depicted, when possible

Book Statistical Learning with Sparsity

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Book Frontiers in Massive Data Analysis

Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.

Book Analysis of Neural Data

Download or read book Analysis of Neural Data written by Robert E. Kass and published by Springer. This book was released on 2014-07-08 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Continual improvements in data collection and processing have had a huge impact on brain research, producing data sets that are often large and complicated. By emphasizing a few fundamental principles, and a handful of ubiquitous techniques, Analysis of Neural Data provides a unified treatment of analytical methods that have become essential for contemporary researchers. Throughout the book ideas are illustrated with more than 100 examples drawn from the literature, ranging from electrophysiology, to neuroimaging, to behavior. By demonstrating the commonality among various statistical approaches the authors provide the crucial tools for gaining knowledge from diverse types of data. Aimed at experimentalists with only high-school level mathematics, as well as computationally-oriented neuroscientists who have limited familiarity with statistics, Analysis of Neural Data serves as both a self-contained introduction and a reference work.

Book Statistical Paradigms  Recent Advances And Reconciliations

Download or read book Statistical Paradigms Recent Advances And Reconciliations written by Ashis Sengupta and published by World Scientific. This book was released on 2014-10-03 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of a collection of research articles on classical and emerging Statistical Paradigms — parametric, non-parametric and semi-parametric, frequentist and Bayesian — encompassing both theoretical advances and emerging applications in a variety of scientific disciplines. For advances in theory, the topics include: Bayesian Inference, Directional Data Analysis, Distribution Theory, Econometrics and Multiple Testing Procedures. The areas in emerging applications include: Bioinformatics, Factorial Experiments and Linear Models, Hotspot Geoinformatics and Reliability.

Book Causal Inference in Statistics

Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Book Neuroimaging of Pain

    Book Details:
  • Author : Luca Saba
  • Publisher : Springer
  • Release : 2017-06-08
  • ISBN : 3319480464
  • Pages : 509 pages

Download or read book Neuroimaging of Pain written by Luca Saba and published by Springer. This book was released on 2017-06-08 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by world renowned scientists, this book expertly reviews all the imaging techniques and exciting new methods for the analysis of the pain, including novel tracers, biomarker, metabolomic and gene-array profiling, together with cellular, genetic, and molecular approaches. Recent advances in human brain imaging techniques have allowed a better understand of the functional connectivity in pain pathways, as well as the functional and anatomical alterations that occur in chronic pain patients. Modern imaging techniques have permitted rapid progress in the understanding of networks in the brain related to pain processing and those related to different types of pain modulation. Neuroimaging of Pain is designed to be a valuable resource for radiologists, neuroradiologists, neurologists and neuroscientists, working in hospitals and universities from junior trainees to consultants.

Book Recent Advances and the Future Generation of Neuroinformatics Infrastructure

Download or read book Recent Advances and the Future Generation of Neuroinformatics Infrastructure written by Xi Cheng and published by Frontiers Media SA. This book was released on 2015-12-11 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: The huge volume of multi-modal neuroimaging data across different neuroscience communities has posed a daunting challenge to traditional methods of data sharing, data archiving, data processing and data analysis. Neuroinformatics plays a crucial role in creating advanced methodologies and tools for the handling of varied and heterogeneous datasets in order to better understand the structure and function of the brain. These tools and methodologies not only enhance data collection, analysis, integration, interpretation, modeling, and dissemination of data, but also promote data sharing and collaboration. This Neuroinformatics Research Topic aims to summarize the state-of-art of the current achievements and explores the directions for the future generation of neuroinformatics infrastructure. The publications present solutions for data archiving, data processing and workflow, data mining, and system integration methodologies. Some of the systems presented are large in scale, geographically distributed, and already have a well-established user community. Some discuss opportunities and methodologies that facilitate large-scale parallel data processing tasks under a heterogeneous computational environment. We wish to stimulate on-going discussions at the level of the neuroinformatics infrastructure including the common challenges, new technologies of maximum benefit, key features of next generation infrastructure, etc. We have asked leading research groups from different research areas of neuroscience/neuroimaging to provide their thoughts on the development of a state of the art and highly-efficient neuroinformatics infrastructure. Such discussions will inspire and help guide the development of a state of the art, highly-efficient neuroinformatics infrastructure.

Book Neuroimaging Genetics

    Book Details:
  • Author : Kristin L. Bigos
  • Publisher : Oxford University Press
  • Release : 2016-02-03
  • ISBN : 0190209771
  • Pages : 433 pages

Download or read book Neuroimaging Genetics written by Kristin L. Bigos and published by Oxford University Press. This book was released on 2016-02-03 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of neuroimaging genetics has grown exponentially over the past decade. To date there are more than 10,000 published papers involving MRI, PET, MEG and genetics. Neuroimaging Genetics: Principles and Practices is the comprehensive volume edited by Drs. Bigos, Hariri, and Weinberger and co-authored by the preeminent scholars in the field. This text reviews the basic principles of neuroimaging techniques and their application to neuroimaging genetics. The work presented in this volume elaborates on the explosive interest from diverse research areas in psychiatry and neurology in the use of imaging genetics as a unique tool to establish and identify mechanisms of risk, establish biological significance, and extend statistical evidence of genetic associations. Examples throughout highlight the application of imaging genetics to understand neurochemical systems and pathways, explore relationships between genetics and the structural and functional connectivity in human brain, and provide insight into mechanisms of risk for psychiatric and neurologic illness.

Book Targeted Learning

    Book Details:
  • Author : Mark J. van der Laan
  • Publisher : Springer Science & Business Media
  • Release : 2011-06-17
  • ISBN : 1441997822
  • Pages : 628 pages

Download or read book Targeted Learning written by Mark J. van der Laan and published by Springer Science & Business Media. This book was released on 2011-06-17 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the target parameter representing the scientific question of interest. This book is aimed at both statisticians and applied researchers interested in causal inference and general effect estimation for observational and experimental data. Part I is an accessible introduction to super learning and the targeted maximum likelihood estimator, including related concepts necessary to understand and apply these methods. Parts II-IX handle complex data structures and topics applied researchers will immediately recognize from their own research, including time-to-event outcomes, direct and indirect effects, positivity violations, case-control studies, censored data, longitudinal data, and genomic studies.