Download or read book Probabilistic Graphical Models written by Daphne Koller and published by MIT Press. This book was released on 2009-07-31 with total page 1270 pages. Available in PDF, EPUB and Kindle. Book excerpt: A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Download or read book Probabilistic Machine Learning written by Kevin P. Murphy and published by MIT Press. This book was released on 2022-03-01 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.
Download or read book Advances in Visual Computing written by Richard Boyle and published by Springer. This book was released on 2007-11-22 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two volume set LNCS 4841 and LNCS 4842 constitutes the refereed proceedings of the Third International Symposium on Visual Computing, ISVC 2007, held in Lake Tahoe, NV, USA, in November 2007. The 77 revised full papers and 42 poster papers presented together with 32 full and five poster papers of six special tracks were carefully reviewed and selected. The papers cover the four main areas of visual computing: vision, graphics, visualization, and virtual reality.
Download or read book Exploring the Advancements and Future Directions of Digital Twins in Healthcare 6 0 written by Dubey, Archi and published by IGI Global. This book was released on 2024-07-18 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The healthcare industry is increasingly complex, demanding personalized treatments and efficient operational processes. Traditional research methods need help to keep pace with these demands, often leading to inefficiencies and suboptimal outcomes. Integrating digital twin technology presents a promising solution to these challenges, offering a virtual platform for modeling and simulating complex healthcare scenarios. However, the full potential of digital twins still needs to be explored mainly due to a lack of comprehensive guidance and practical insights for researchers and practitioners. Exploring the Advancements and Future Directions of Digital Twins in Healthcare 6.0 is not just a theoretical exploration. It is a practical guide that bridges the gap between theory and practice, offering real-world case studies, best practices, and insights into personalized medicine, real-time patient monitoring, and healthcare process optimization. By equipping you with the knowledge and tools needed to effectively integrate digital twins into your healthcare research and operations, this book is a valuable resource for researchers, academicians, medical practitioners, scientists, and students.
Download or read book Probabilistic Graphical Models written by Luis Enrique Sucar and published by Springer Nature. This book was released on 2020-12-23 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python. The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes. Topics and features: Presents a unified framework encompassing all of the main classes of PGMs Explores the fundamental aspects of representation, inference and learning for each technique Examines new material on partially observable Markov decision processes, and graphical models Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models Covers multidimensional Bayesian classifiers, relational graphical models, and causal models Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks Outlines the practical application of the different techniques Suggests possible course outlines for instructors This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference. Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.
Download or read book Machine Learning and Probabilistic Graphical Models for Decision Support Systems written by Kim Phuc Tran and published by CRC Press. This book was released on 2022-10-13 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent advancements in research, a review of new methods and techniques, and applications in decision support systems (DSS) with Machine Learning and Probabilistic Graphical Models, which are very effective techniques in gaining knowledge from Big Data and in interpreting decisions. It explores Bayesian network learning, Control Chart, Reinforcement Learning for multicriteria DSS, Anomaly Detection in Smart Manufacturing with Federated Learning, DSS in healthcare, DSS for supply chain management, etc. Researchers and practitioners alike will benefit from this book to enhance the understanding of machine learning, Probabilistic Graphical Models, and their uses in DSS in the context of decision making with uncertainty. The real-world case studies in various fields with guidance and recommendations for the practical applications of these studies are introduced in each chapter.
Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.
Download or read book Advanced Methods and Applications for Neurointelligence written by Manning Wang and published by Frontiers Media SA. This book was released on 2024-05-31 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neurointelligence techniques play a key role in building general artificial intelligence systems. Some researchers and engineers have tried to design novel bio-inspired algorithms and hardware by mimicking the working principles of biological nervous systems. Benefiting from the progress in representational learning, neuroscience, and computational hardware, bio-inspired research has greatly contributed to the development of neurointelligence. Currently, advanced bio-inspired methods have been widely applied in robotics, visual scene understanding, medical image analysis, human-machine interaction and so on. Moreover, neurointelligence covers interdisciplinary topics with neuroscience, robotics, artificial intelligence, cognitive science, machine learning, and pattern recognition. This research topic is intended to provide a better understanding of the opportunities, challenges, and promising future directions for neurointelligence.
Download or read book Proceedings of International Conference on Image Vision and Intelligent Systems 2023 ICIVIS 2023 written by Peng You and published by Springer Nature. This book was released on with total page 779 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Academic Press Library in Signal Processing written by Paulo S.R. Diniz and published by Academic Press. This book was released on 2013-09-21 with total page 1559 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first volume, edited and authored by world leading experts, gives a review of the principles, methods and techniques of important and emerging research topics and technologies in machine learning and advanced signal processing theory. With this reference source you will: - Quickly grasp a new area of research - Understand the underlying principles of a topic and its application - Ascertain how a topic relates to other areas and learn of the research issues yet to be resolved - Quick tutorial reviews of important and emerging topics of research in machine learning - Presents core principles in signal processing theory and shows their applications - Reference content on core principles, technologies, algorithms and applications - Comprehensive references to journal articles and other literature on which to build further, more specific and detailed knowledge - Edited by leading people in the field who, through their reputation, have been able to commission experts to write on a particular topic
Download or read book Advances in Neural Networks ISNN 2019 written by Huchuan Lu and published by Springer. This book was released on 2019-06-26 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.
Download or read book Advances in Knowledge Discovery and Data Mining written by De-Nian Yang and published by Springer Nature. This book was released on with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Comprehensive Remote Sensing written by Shunlin Liang and published by Elsevier. This book was released on 2017-11-08 with total page 3183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding
Download or read book Advanced Vehicle Control written by Johannes Edelmann and published by CRC Press. This book was released on 2016-12-19 with total page 1676 pages. Available in PDF, EPUB and Kindle. Book excerpt: The AVEC symposium is a leading international conference in the fields of vehicle dynamics and advanced vehicle control, bringing together scientists and engineers from academia and automotive industry. The first symposium was held in 1992 in Yokohama, Japan. Since then, biennial AVEC symposia have been established internationally and have considerably contributed to the progress of technology in automotive research and development. In 2016 the 13th International Symposium on Advanced Vehicle Control (AVEC’16) was held in Munich, Germany, from 13th to 16th of September 2016. The symposium was hosted by the Munich University of Applied Sciences. AVEC’16 puts a special focus on automatic driving, autonomous driving functions and driver assist systems, integrated control of interacting control systems, controlled suspension systems, active wheel torque distribution, and vehicle state and parameter estimation. 132 papers were presented at the symposium and are published in these proceedings as full paper contributions. The papers review the latest research developments and practical applications in highly relevant areas of vehicle control, and may serve as a reference for researchers and engineers.
Download or read book Probabilistic Graphical Models written by Linda C. van der Gaag and published by Springer. This book was released on 2014-09-11 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 7th International Workshop on Probabilistic Graphical Models, PGM 2014, held in Utrecht, The Netherlands, in September 2014. The 38 revised full papers presented in this book were carefully reviewed and selected from 44 submissions. The papers cover all aspects of graphical models for probabilistic reasoning, decision making, and learning.
Download or read book Recent Advances on Soft Computing and Data Mining written by Rozaida Ghazali and published by Springer Nature. This book was released on 2024 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores methods for leveraging data to create innovative solutions that offer significant and meaningful value. It provides practical insights into the concepts and techniques essential for maximizing the outcomes of large-scale research and data mining projects. Readers are guided through analytical thinking processes, addressing challenges in deciphering complex data systems and deriving commercial value from the data. Soft computing and data mining, also known as data-driven science, encompass a diverse range of interdisciplinary scientific methods and processes. The proceedings of "Recent Advances on Soft Computing and Data Mining" provide comprehensive knowledge to address various challenges encountered in complex systems. By integrating practices and applications from both domains, it offers a robust framework for tackling these issues. To excel in data-driven ecosystems, researchers, data analysts, and practitioners must carefully select the most suitable approaches and tools. Understanding the design choices and options available is essential for appreciating the underlying concepts, tools, and techniques utilized in these endeavors.
Download or read book Database Systems for Advanced Applications written by Kian Lee Tan and published by Springer Science & Business Media. This book was released on 2006-04-05 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 11th International Conference on Database Systems for Advanced Applications, DASFAA 2006, held in Singapore in April 2006. 46 revised full papers and 16 revised short papers presented were carefully reviewed and selected from 188 submissions. Topics include sensor networks, subsequence matching and repeating patterns, spatial-temporal databases, data mining, XML compression and indexing, xpath query evaluation, uncertainty and streams, peer-to-peer and distributed networks and more.