Download or read book Advances in Neural Information Processing Systems 11 written by Michael S. Kearns and published by MIT Press. This book was released on 1999 with total page 1122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Download or read book Advances in Neural Information Processing Systems 10 written by Michael I. Jordan and published by MIT Press. This book was released on 1998 with total page 1114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. These proceedings contain all of the papers that were presented.
Download or read book Advances in Neural Information Processing Systems 17 written by Lawrence K. Saul and published by MIT Press. This book was released on 2005 with total page 1710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.
Download or read book Advances in Neural Information Processing Systems 15 written by Suzanna Becker and published by MIT Press. This book was released on 2003 with total page 1738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the 2002 Neural Information Processing Systems Conference.
Download or read book Advances in Neural Information Processing Systems 12 written by Sara A. Solla and published by MIT Press. This book was released on 2000 with total page 1124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
Download or read book Theory of Neural Information Processing Systems written by A.C.C. Coolen and published by OUP Oxford. This book was released on 2005-07-21 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theory of Neural Information Processing Systems provides an explicit, coherent, and up-to-date account of the modern theory of neural information processing systems. It has been carefully developed for graduate students from any quantitative discipline, including mathematics, computer science, physics, engineering or biology, and has been thoroughly class-tested by the authors over a period of some 8 years. Exercises are presented throughout the text and notes on historical background and further reading guide the student into the literature. All mathematical details are included and appendices provide further background material, including probability theory, linear algebra and stochastic processes, making this textbook accessible to a wide audience.
Download or read book Advances in Neural Information Processing Systems 13 written by Todd K. Leen and published by MIT Press. This book was released on 2001 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the 2000 Neural Information Processing Systems (NIPS) Conference.The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. The conference is interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, vision, speech and signal processing, reinforcement learning and control, implementations, and diverse applications. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented at the 2000 conference.
Download or read book Advances in Neural Information Processing Systems 19 written by Bernhard Schölkopf and published by MIT Press. This book was released on 2007 with total page 1668 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
Download or read book Neural Information Processing and VLSI written by Bing J. Sheu and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Download or read book Advances in Neural Information Processing Systems 9 written by Michael C. Mozer and published by MIT Press. This book was released on 1997 with total page 1128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes neural networks and genetic algorithms, cognitive science, neuroscience and biology, computer science, AI, applied mathematics, physics, and many branches of engineering. Only about 30% of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. All of the papers presented appear in these proceedings.
Download or read book Large scale Kernel Machines written by Léon Bottou and published by MIT Press. This book was released on 2007 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solutions for learning from large scale datasets, including kernel learning algorithms that scale linearly with the volume of the data and experiments carried out on realistically large datasets. Pervasive and networked computers have dramatically reduced the cost of collecting and distributing large datasets. In this context, machine learning algorithms that scale poorly could simply become irrelevant. We need learning algorithms that scale linearly with the volume of the data while maintaining enough statistical efficiency to outperform algorithms that simply process a random subset of the data. This volume offers researchers and engineers practical solutions for learning from large scale datasets, with detailed descriptions of algorithms and experiments carried out on realistically large datasets. At the same time it offers researchers information that can address the relative lack of theoretical grounding for many useful algorithms. After a detailed description of state-of-the-art support vector machine technology, an introduction of the essential concepts discussed in the volume, and a comparison of primal and dual optimization techniques, the book progresses from well-understood techniques to more novel and controversial approaches. Many contributors have made their code and data available online for further experimentation. Topics covered include fast implementations of known algorithms, approximations that are amenable to theoretical guarantees, and algorithms that perform well in practice but are difficult to analyze theoretically. Contributors Léon Bottou, Yoshua Bengio, Stéphane Canu, Eric Cosatto, Olivier Chapelle, Ronan Collobert, Dennis DeCoste, Ramani Duraiswami, Igor Durdanovic, Hans-Peter Graf, Arthur Gretton, Patrick Haffner, Stefanie Jegelka, Stephan Kanthak, S. Sathiya Keerthi, Yann LeCun, Chih-Jen Lin, Gaëlle Loosli, Joaquin Quiñonero-Candela, Carl Edward Rasmussen, Gunnar Rätsch, Vikas Chandrakant Raykar, Konrad Rieck, Vikas Sindhwani, Fabian Sinz, Sören Sonnenburg, Jason Weston, Christopher K. I. Williams, Elad Yom-Tov
Download or read book Advances in Neural Information Processing Systems 16 written by Sebastian Thrun and published by MIT Press. This book was released on 2004 with total page 1694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.
Download or read book Neural Networks Tricks of the Trade written by Grégoire Montavon and published by Springer. This book was released on 2012-11-14 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.
Download or read book Advances in Neural Information Processing Systems 8 written by David S. Touretzky and published by MIT Press. This book was released on 1996 with total page 1128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen greatly increased interaction between theoretical work in neuroscience, cognitive science and information processing, and experimental work requiring sophisticated computational modeling. The 152 contributions in NIPS 8 focus on a wide variety of algorithms and architectures for both supervised and unsupervised learning. They are divided into nine parts: Cognitive Science, Neuroscience, Theory, Algorithms and Architectures, Implementations, Speech and Signal Processing, Vision, Applications, and Control. Chapters describe how neuroscientists and cognitive scientists use computational models of neural systems to test hypotheses and generate predictions to guide their work. This work includes models of how networks in the owl brainstem could be trained for complex localization function, how cellular activity may underlie rat navigation, how cholinergic modulation may regulate cortical reorganization, and how damage to parietal cortex may result in neglect. Additional work concerns development of theoretical techniques important for understanding the dynamics of neural systems, including formation of cortical maps, analysis of recurrent networks, and analysis of self- supervised learning. Chapters also describe how engineers and computer scientists have approached problems of pattern recognition or speech recognition using computational architectures inspired by the interaction of populations of neurons within the brain. Examples are new neural network models that have been applied to classical problems, including handwritten character recognition and object recognition, and exciting new work that focuses on building electronic hardware modeled after neural systems. A Bradford Book
Download or read book Spike timing dependent plasticity written by Henry Markram and published by Frontiers E-books. This book was released on with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when two neurons are active together. Neurons that fire together may therefore not necessarily wire together if the precise timing of the spikes involved are not tighly correlated. In the subsequent 15 years, Spike Timing Dependent Plasticity (STDP) has been found in multiple brain brain regions and in many different species. The size and shape of the time windows in which positive and negative changes can be made vary for different brain regions, but the core principle of spike timing dependent changes remain. A large number of theoretical studies have also been conducted during this period that explore the computational function of this driving principle and STDP algorithms have become the main learning algorithm when modeling neural networks. This Research Topic will bring together all the key experimental and theoretical research on STDP.
Download or read book Deep Learning Illustrated written by Jon Krohn and published by Addison-Wesley Professional. This book was released on 2019-08-05 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
Download or read book Program Synthesis written by Sumit Gulwani and published by . This book was released on 2017-07-11 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Program synthesis is the task of automatically finding a program in the underlying programming language that satisfies the user intent expressed in the form of some specification. Since the inception of artificial intelligence in the 1950s, this problem has been considered the holy grail of Computer Science. Despite inherent challenges in the problem such as ambiguity of user intent and a typically enormous search space of programs, the field of program synthesis has developed many different techniques that enable program synthesis in different real-life application domains. It is now used successfully in software engineering, biological discovery, compute-raided education, end-user programming, and data cleaning. In the last decade, several applications of synthesis in the field of programming by examples have been deployed in mass-market industrial products. This monograph is a general overview of the state-of-the-art approaches to program synthesis, its applications, and subfields. It discusses the general principles common to all modern synthesis approaches such as syntactic bias, oracle-guided inductive search, and optimization techniques. We then present a literature review covering the four most common state-of-the-art techniques in program synthesis: enumerative search, constraint solving, stochastic search, and deduction-based programming by examples. It concludes with a brief list of future horizons for the field.