EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advances in Knowledge Discovery and Data Mining

Download or read book Advances in Knowledge Discovery and Data Mining written by Usama M. Fayyad and published by . This book was released on 1996 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.

Book Advanced Data Mining Techniques

Download or read book Advanced Data Mining Techniques written by David L. Olson and published by Springer Science & Business Media. This book was released on 2008-01-01 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamental concepts of data mining, to demonstrate the potential of gathering large sets of data, and analyzing these data sets to gain useful business understanding. The book is organized in three parts. Part I introduces concepts. Part II describes and demonstrates basic data mining algorithms. It also contains chapters on a number of different techniques often used in data mining. Part III focuses on business applications of data mining.

Book Exploring Advances in Interdisciplinary Data Mining and Analytics  New Trends

Download or read book Exploring Advances in Interdisciplinary Data Mining and Analytics New Trends written by Taniar, David and published by IGI Global. This book was released on 2011-12-31 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is an updated look at the state of technology in the field of data mining and analytics offering the latest technological, analytical, ethical, and commercial perspectives on topics in data mining"--Provided by publisher.

Book Advances in Machine Learning and Data Mining for Astronomy

Download or read book Advances in Machine Learning and Data Mining for Astronomy written by Michael J. Way and published by CRC Press. This book was released on 2012-03-29 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines

Book Data Mining Methods and Models

Download or read book Data Mining Methods and Models written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2006-02-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.

Book Recent Advances in Data Mining of Enterprise Data

Download or read book Recent Advances in Data Mining of Enterprise Data written by T. Warren Liao and published by World Scientific. This book was released on 2008-01-15 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of the new field of data mining is the analysis of large and complex datasets. Some very important datasets may be derived from business and industrial activities. This kind of data is known as OC enterprise dataOCO. The common characteristic of such datasets is that the analyst wishes to analyze them for the purpose of designing a more cost-effective strategy for optimizing some type of performance measure, such as reducing production time, improving quality, eliminating wastes, or maximizing profit. Data in this category may describe different scheduling scenarios in a manufacturing environment, quality control of some process, fault diagnosis in the operation of a machine or process, risk analysis when issuing credit to applicants, management of supply chains in a manufacturing system, or data for business related decision-making. Sample Chapter(s). Foreword (37 KB). Chapter 1: Enterprise Data Mining: A Review and Research Directions (655 KB). Contents: Enterprise Data Mining: A Review and Research Directions (T W Liao); Application and Comparison of Classification Techniques in Controlling Credit Risk (L Yu et al.); Predictive Classification with Imbalanced Enterprise Data (S Daskalaki et al.); Data Mining Applications of Process Platform Formation for High Variety Production (J Jiao & L Zhang); Multivariate Control Charts from a Data Mining Perspective (G C Porzio & G Ragozini); Maintenance Planning Using Enterprise Data Mining (L P Khoo et al.); Mining Images of Cell-Based Assays (P Perner); Support Vector Machines and Applications (T B Trafalis & O O Oladunni); A Survey of Manifold-Based Learning Methods (X Huo et al.); and other papers. Readership: Graduate students in engineering, computer science, and business schools; researchers and practioners of data mining with emphazis of enterprise data mining."

Book Dynamic and Advanced Data Mining for Progressing Technological Development  Innovations and Systemic Approaches

Download or read book Dynamic and Advanced Data Mining for Progressing Technological Development Innovations and Systemic Approaches written by Ali, A B M Shawkat and published by IGI Global. This book was released on 2009-11-30 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book discusses advances in modern data mining research in today's rapidly growing global and technological environment"--Provided by publisher.

Book Statistical and Machine Learning Data Mining

Download or read book Statistical and Machine Learning Data Mining written by Bruce Ratner and published by CRC Press. This book was released on 2017-07-12 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interest in predictive analytics of big data has grown exponentially in the four years since the publication of Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data, Second Edition. In the third edition of this bestseller, the author has completely revised, reorganized, and repositioned the original chapters and produced 13 new chapters of creative and useful machine-learning data mining techniques. In sum, the 43 chapters of simple yet insightful quantitative techniques make this book unique in the field of data mining literature. What is new in the Third Edition: The current chapters have been completely rewritten. The core content has been extended with strategies and methods for problems drawn from the top predictive analytics conference and statistical modeling workshops. Adds thirteen new chapters including coverage of data science and its rise, market share estimation, share of wallet modeling without survey data, latent market segmentation, statistical regression modeling that deals with incomplete data, decile analysis assessment in terms of the predictive power of the data, and a user-friendly version of text mining, not requiring an advanced background in natural language processing (NLP). Includes SAS subroutines which can be easily converted to other languages. As in the previous edition, this book offers detailed background, discussion, and illustration of specific methods for solving the most commonly experienced problems in predictive modeling and analysis of big data. The author addresses each methodology and assigns its application to a specific type of problem. To better ground readers, the book provides an in-depth discussion of the basic methodologies of predictive modeling and analysis. While this type of overview has been attempted before, this approach offers a truly nitty-gritty, step-by-step method that both tyros and experts in the field can enjoy playing with.

Book Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences

Download or read book Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences written by John J. McArdle and published by Routledge. This book was released on 2013-08-15 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the latest techniques in exploratory data mining (EDM) for the analysis of data in the social and behavioral sciences to help researchers assess the predictive value of different combinations of variables in large data sets. Methodological findings and conceptual models that explain reliable EDM techniques for predicting and understanding various risk mechanisms are integrated throughout. Numerous examples illustrate the use of these techniques in practice. Contributors provide insight through hands-on experiences with their own use of EDM techniques in various settings. Readers are also introduced to the most popular EDM software programs. A related website at http://mephisto.unige.ch/pub/edm-book-supplement/offers color versions of the book’s figures, a supplemental paper to chapter 3, and R commands for some chapters. The results of EDM analyses can be perilous – they are often taken as predictions with little regard for cross-validating the results. This carelessness can be catastrophic in terms of money lost or patients misdiagnosed. This book addresses these concerns and advocates for the development of checks and balances for EDM analyses. Both the promises and the perils of EDM are addressed. Editors McArdle and Ritschard taught the "Exploratory Data Mining" Advanced Training Institute of the American Psychological Association (APA). All contributors are top researchers from the US and Europe. Organized into two parts--methodology and applications, the techniques covered include decision, regression, and SEM tree models, growth mixture modeling, and time based categorical sequential analysis. Some of the applications of EDM (and the corresponding data) explored include: selection to college based on risky prior academic profiles the decline of cognitive abilities in older persons global perceptions of stress in adulthood predicting mortality from demographics and cognitive abilities risk factors during pregnancy and the impact on neonatal development Intended as a reference for researchers, methodologists, and advanced students in the social and behavioral sciences including psychology, sociology, business, econometrics, and medicine, interested in learning to apply the latest exploratory data mining techniques. Prerequisites include a basic class in statistics.

Book Business Modeling and Data Mining

Download or read book Business Modeling and Data Mining written by Dorian Pyle and published by Elsevier. This book was released on 2003-05-17 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business Modeling and Data Mining demonstrates how real world business problems can be formulated so that data mining can answer them. The concepts and techniques presented in this book are the essential building blocks in understanding what models are and how they can be used practically to reveal hidden assumptions and needs, determine problems, discover data, determine costs, and explore the whole domain of the problem. This book articulately explains how to understand both the strategic and tactical aspects of any business problem, identify where the key leverage points are and determine where quantitative techniques of analysis -- such as data mining -- can yield most benefit. It addresses techniques for discovering how to turn colloquial expression and vague descriptions of a business problem first into qualitative models and then into well-defined quantitative models (using data mining) that can then be used to find a solution. The book completes the process by illustrating how these findings from data mining can be turned into strategic or tactical implementations. · Teaches how to discover, construct and refine models that are useful in business situations· Teaches how to design, discover and develop the data necessary for mining · Provides a practical approach to mining data for all business situations· Provides a comprehensive, easy-to-use, fully interactive methodology for building models and mining data· Provides pointers to supplemental online resources, including a downloadable version of the methodology and software tools.

Book Managing and Mining Graph Data

Download or read book Managing and Mining Graph Data written by Charu C. Aggarwal and published by Springer Science & Business Media. This book was released on 2010-02-02 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: Managing and Mining Graph Data is a comprehensive survey book in graph management and mining. It contains extensive surveys on a variety of important graph topics such as graph languages, indexing, clustering, data generation, pattern mining, classification, keyword search, pattern matching, and privacy. It also studies a number of domain-specific scenarios such as stream mining, web graphs, social networks, chemical and biological data. The chapters are written by well known researchers in the field, and provide a broad perspective of the area. This is the first comprehensive survey book in the emerging topic of graph data processing. Managing and Mining Graph Data is designed for a varied audience composed of professors, researchers and practitioners in industry. This volume is also suitable as a reference book for advanced-level database students in computer science and engineering.

Book Advanced Data Mining Tools and Methods for Social Computing

Download or read book Advanced Data Mining Tools and Methods for Social Computing written by Sourav De and published by Academic Press. This book was released on 2022-01-14 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Data Mining Tools and Methods for Social Computing explores advances in the latest data mining tools, methods, algorithms and the architectures being developed specifically for social computing and social network analysis. The book reviews major emerging trends in technology that are supporting current advancements in social networks, including data mining techniques and tools. It also aims to highlight the advancement of conventional approaches in the field of social networking. Chapter coverage includes reviews of novel techniques and state-of-the-art advances in the area of data mining, machine learning, soft computing techniques, and their applications in the field of social network analysis. - Provides insights into the latest research trends in social network analysis - Covers a broad range of data mining tools and methods for social computing and analysis - Includes practical examples and case studies across a range of tools and methods - Features coding examples and supplementary data sets in every chapter

Book Data Mining

    Book Details:
  • Author : Mehmed Kantardzic
  • Publisher : John Wiley & Sons
  • Release : 2011-08-16
  • ISBN : 0470890452
  • Pages : 554 pages

Download or read book Data Mining written by Mehmed Kantardzic and published by John Wiley & Sons. This book was released on 2011-08-16 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews state-of-the-art methodologies and techniques for analyzing enormous quantities of raw data in high-dimensional data spaces, to extract new information for decision making. The goal of this book is to provide a single introductory source, organized in a systematic way, in which we could direct the readers in analysis of large data sets, through the explanation of basic concepts, models and methodologies developed in recent decades. If you are an instructor or professor and would like to obtain instructor’s materials, please visit http://booksupport.wiley.com If you are an instructor or professor and would like to obtain a solutions manual, please send an email to: [email protected]

Book Urban Informatics

    Book Details:
  • Author : Wenzhong Shi
  • Publisher : Springer Nature
  • Release : 2021-04-06
  • ISBN : 9811589836
  • Pages : 941 pages

Download or read book Urban Informatics written by Wenzhong Shi and published by Springer Nature. This book was released on 2021-04-06 with total page 941 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book is the first to systematically introduce the principles of urban informatics and its application to every aspect of the city that involves its functioning, control, management, and future planning. It introduces new models and tools being developed to understand and implement these technologies that enable cities to function more efficiently – to become ‘smart’ and ‘sustainable’. The smart city has quickly emerged as computers have become ever smaller to the point where they can be embedded into the very fabric of the city, as well as being central to new ways in which the population can communicate and act. When cities are wired in this way, they have the potential to become sentient and responsive, generating massive streams of ‘big’ data in real time as well as providing immense opportunities for extracting new forms of urban data through crowdsourcing. This book offers a comprehensive review of the methods that form the core of urban informatics from various kinds of urban remote sensing to new approaches to machine learning and statistical modelling. It provides a detailed technical introduction to the wide array of tools information scientists need to develop the key urban analytics that are fundamental to learning about the smart city, and it outlines ways in which these tools can be used to inform design and policy so that cities can become more efficient with a greater concern for environment and equity.

Book Handbook of Statistical Analysis and Data Mining Applications

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Book Data Mining Approaches for Big Data and Sentiment Analysis in Social Media

Download or read book Data Mining Approaches for Big Data and Sentiment Analysis in Social Media written by Brij Gupta and published by . This book was released on 2021 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends"--

Book Data Mining and Knowledge Discovery for Process Monitoring and Control

Download or read book Data Mining and Knowledge Discovery for Process Monitoring and Control written by Xue Z. Wang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer-based control systems are able to collect a large amount of information, display it to operators and store it in databases but the interpretation of the data and the subsequent decision making relies mainly on operators with little computer support. This book introduces developments in automatic analysis and interpretation of process-operational data both in real-time and over the operational history, and describes new concepts and methodologies for developing intelligent, state space-based systems for process monitoring, control and diagnosis. The book brings together new methods and algorithms from process monitoring and control, data mining and knowledge discovery, artificial intelligence, pattern recognition, and causal relationship discovery, as well as signal processing. It also provides a framework for integrating plant operators and supervisors into the design of process monitoring and control systems.