EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advancement of Shock Capturing Computational Fluid Dynamics Methods

Download or read book Advancement of Shock Capturing Computational Fluid Dynamics Methods written by Keiichi Kitamura and published by Springer Nature. This book was released on 2020-10-31 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a compact primer on advanced numerical flux functions in computational fluid dynamics (CFD). It comprehensively introduces readers to methods used at the forefront of compressible flow simulation research. Further, it provides a comparative evaluation of the methods discussed, helping readers select the best numerical flux function for their specific needs. The first two chapters of the book reviews finite volume methods and numerical functions, before discussing issues commonly encountered in connection with each. The third and fourth chapter, respectively, address numerical flux functions for ideal gases and more complex fluid flow cases— multiphase flows, supercritical fluids and magnetohydrodynamics. In closing, the book highlights methods that provide high levels of accuracy. The concise content provides an overview of recent advances in CFD methods for shockwaves. Further, it presents the author’s insights into the advantages and disadvantages of each method, helping readers implement the numerical methods in their own research.

Book Computational Fluid Dynamics

    Book Details:
  • Author : John F. Wendt
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 3662113503
  • Pages : 299 pages

Download or read book Computational Fluid Dynamics written by John F. Wendt and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an outgrowth of a von Kannan Institute Lecture Series by the same title first presented in 1985 and repeated with modifications in succeeding years. The objective, then and now, was to present the subject of computational fluid dynamics (CFD) to an audience unfamiliar with all but the most basic aspects of numerical techniques and to do so in such a way that the practical application ofCFD would become clear to everyone. Remarks from hundreds of persons who followed this course encouraged the editor and the authors to improve the content and organization year by year and eventually to produce the present volume. The book is divided into two parts. In the first part, John Anderson lays out the subject by first describing the governing equations offluid dynamics, concentration on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed next and then transformation techniques and grids are also discussed. This section closes with two examples of numerical methods which can be understood easily by all concerned: source and vortex panel methods and the explicit method. The second part of the book is devoted to four self-contained chapters on more advanced material: Roger Grundmann treats the boundary layer equations and methods of solution; Gerard Degrez treats implicit time-marching methods for inviscid and viscous compressible flows, and Eric Dick treats, in two separate articles, both finite-volume and finite-element methods.

Book Computational Fluid Dynamics

Download or read book Computational Fluid Dynamics written by John Wendt and published by Springer Science & Business Media. This book was released on 2008-11-04 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.

Book Space   Time Conservation Element and Solution Element Method

Download or read book Space Time Conservation Element and Solution Element Method written by Chih-Yung Wen and published by Springer Nature. This book was released on 2023-05-10 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book introduces the fundamentals of the space–time conservation element and solution element (CESE) method, which is a novel numerical approach for solving equations of physical conservation laws. It highlights the recent progress to establish various improved CESE schemes and its engineering applications. With attractive accuracy, efficiency, and robustness, the CESE method is particularly suitable for solving time-dependent nonlinear hyperbolic systems involving dynamical evolutions of waves and discontinuities. Therefore, it has been applied to a wide spectrum of problems, e.g., aerodynamics, aeroacoustics, magnetohydrodynamics, multi-material flows, and detonations. This book contains algorithm analysis, numerical examples, as well as demonstration codes. This book is intended for graduate students and researchers who are interested in the fields such as computational fluid dynamics (CFD), mechanical engineering, and numerical computation.

Book Transonic  Shock  and Multidimensional Flows

Download or read book Transonic Shock and Multidimensional Flows written by Richard E. Meyer and published by Academic Press. This book was released on 2014-05-10 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics Research Center Symposium: Transonic, Shock, and Multidimensional Flows: Advances in Scientific Computing covers the lectures presented at a Symposium on Transonic, Shock, and Multidimensional Flows, held in Madison on May 13-15, 1981, under the auspices of the Mathematics Research Center of the University of Wisconsin. The book focuses on the advancements in the scientific computation of high-speed aerodynamic phenomena and related fluid motions. The selection first elaborates on computational fluid dynamics of airfoils and wings; shock-free configurations in two- and three-dimensional transonic flow; and steady-state solution of the Euler equations for transonic flow. Discussions focus on boundary conditions, convergence acceleration, indirect design of airfoils, and trailing edge and the boundary layer. The text then examines the calculation of transonic potential flow past three-dimensional configurations and remarks on the numerical solution of Tricomi-type equations. The manuscript ponders on the design and numerical analysis of vortex methods, shock calculations and the numerical solution of singular perturbation problems, tracking of interfaces for fluid flow, and transonic flows with viscous effects. Topics include numerical algorithm, difference approximation for scalar equations, boundary conditions, transonic flow in a tube, and governing equations. The selection is a dependable reference for researchers interested in transonic, shock, and multidimensional flows.

Book Advances in Fluid Mechanics XIII

Download or read book Advances in Fluid Mechanics XIII written by S. Hernández and published by WIT Press. This book was released on 2020-11-07 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of fluid mechanics is vast and has numerous and diverse applications. As such, it covers a wide range of topics including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. The 13th International Conference on Advances in Fluid Mechanics, from which this volume originates, had an emphasis on new applications and research currently in progress. The papers included cover such topics as Boundary elements and other mesh reduction methods; Fluid structure interaction; Multiphase heat transfer; Environmental fluid dynamics; Energy harvesting; Nano and micro fluids; Complex flows; Jets; Droplet and spray dynamics; Bubble dynamics; Multiphase fluid flow; Pumping and fluid transportation; Complex and non-Newtonian fluids; Chemical reaction flow; Hydroelectromagnetic flow; hypersonic flows; Wave theory; Acoustics of noise propagation; Nanotechnology applications in fluids and heat transfer; Bluff body aerodynamics; Aerodynamic shape optimization.

Book Recent Advances in Theoretical  Applied  Computational and Experimental Mechanics

Download or read book Recent Advances in Theoretical Applied Computational and Experimental Mechanics written by B. N. Singh and published by Springer Nature. This book was released on 2020-04-03 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains selected papers presented at the 7th International Conference on Theoretical, Applied, Computational and Experimental Mechanics. The papers come from diverse disciplines, such as aerospace, civil, mechanical, and reliability engineering, physics, and navel architecture. The contents of this volume focus on different aspects of mechanics, namely, fluid mechanics, solid mechanics, flight mechanics, control, and propulsion. This volume will be of use to researchers interested in the study of mechanics across disciplines.

Book Adaptive High order Methods in Computational Fluid Dynamics

Download or read book Adaptive High order Methods in Computational Fluid Dynamics written by Z. J. Wang and published by World Scientific. This book was released on 2011 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of important contributions by world-renowned experts on adaptive high-order methods in computational fluid dynamics (CFD). It covers several widely used, and still intensively researched methods, including the discontinuous Galerkin, residual distribution, finite volume, differential quadrature, spectral volume, spectral difference, PNPM, and correction procedure via reconstruction methods. The main focus is applications in aerospace engineering, but the book should also be useful in many other engineering disciplines including mechanical, chemical and electrical engineering. Since many of these methods are still evolving, the book will be an excellent reference for researchers and graduate students to gain an understanding of the state of the art and remaining challenges in high-order CFD methods.

Book Shock Fitting

    Book Details:
  • Author : Marcello Onofri
  • Publisher : Springer
  • Release : 2017-11-18
  • ISBN : 3319684272
  • Pages : 228 pages

Download or read book Shock Fitting written by Marcello Onofri and published by Springer. This book was released on 2017-11-18 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the revolutionary capabilities of new shock fitting algorithms; a great improvement in computational fluid dynamics (CFD) for high-speed numerical simulations. Shock fitting methods provide a solution to the current difficulties and inaccuracies in shock-capturing approaches. This work traces the evolution of shock-fitting methods, from the pioneering methods based on the structured grids (boundary and floating shock-fitting) to recent developments on unstructured grids, illustrating algorithmic details, significant applications and potential developments. Also, to celebrate the centenary birth of the father of shock-fitting techniques, the book also includes a tribute to Gino Moretti, as well as his unpublished manuscript. This book will appeal to professionals, researchers, and graduate students in the field of CFD.

Book Advances in Computational Fluid Structure Interaction and Flow Simulation

Download or read book Advances in Computational Fluid Structure Interaction and Flow Simulation written by Yuri Bazilevs and published by Birkhäuser. This book was released on 2016-10-04 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a definitive and valuable resource.

Book Advances in Fluid Mechanics

Download or read book Advances in Fluid Mechanics written by Dia Zeidan and published by Springer Nature. This book was released on 2022-06-06 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book provides invited and reviewed contributions in mathematical, physical and experimental modelling and simulations in all fluid mechanics branches. Contributions explore the emerging and state-of-the-art tools in the field authored by well-established researchers to derive improved performance of modelling and simulations. Serving the multidisciplinary fluid mechanics community, this book aims to publish new research work that enhances the prediction and understanding of fluid mechanics and balances from academic theory to practical applications through modelling, numerical studies, algorithms and simulation. The book offers researchers, students and practitioners significant insights on modelling and simulations in fluid mechanics. It offers readers a range of academic contributions on fluid mechanics by researchers that have become leaders in their field. The research work presented in this book will add values to the existing literature in terms of what needs to be done better to direct modelling and simulations towards a growing and rapidly developing field.

Book Parallel Computational Fluid Dynamics

Download or read book Parallel Computational Fluid Dynamics written by Rupak Biswas and published by DEStech Publications, Inc. This book was released on 2010 with total page 703 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Recent Advances in Computational Fluid Dynamics

Download or read book Recent Advances in Computational Fluid Dynamics written by C.C. Chao and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the preface: Fluid dynamics is an excellent example of how recent advances in computational tools and techniques permit the rapid advance of basic and applied science. The development of computational fluid dynamics (CFD) has opened new areas of research and has significantly supplemented information available from experimental measurements. Scientific computing is directly responsible for such recent developments as the secondary instability theory of transition to turbulence, dynamical systems analyses of routes to chaos, ideas on the geometry of turbulence, direct simulations of turbulence, three-dimensional full-aircraft flow analyses, and so on. We believe that CFD has already achieved a status in the tool-kit of fluid mechanicians equal to that of the classical scientific techniques of mathematical analysis and laboratory experiment.

Book Advances in Hypersonics

Download or read book Advances in Hypersonics written by BERTIN and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: These three volumes entitled Advances in Hypersonics contain the Proceedings of the Second and Third Joint US/Europe Short Course in Hypersonics which took place in Colorado Springs and Aachen. The Second Course was organized at the US Air Force Academy, USA in January 1989 and the Third Course at Aachen, Germany in October 1990. The main idea of these Courses was to present to chemists, com puter scientists, engineers, experimentalists, mathematicians, and physicists state of the art lectures in scientific and technical dis ciplines including mathematical modeling, computational methods, and experimental measurements necessary to define the aerothermo dynamic environments for space vehicles such as the US Orbiter or the European Hermes flying at hypersonic speeds. The subjects can be grouped into the following areas: Phys ical environments, configuration requirements, propulsion systems (including airbreathing systems), experimental methods for external and internal flow, theoretical and numerical methods. Since hyper sonic flight requires highly integrated systems, the Short Courses not only aimed to give in-depth analysis of hypersonic research and technology but also tried to broaden the view of attendees to give them the ability to understand the complex problem of hypersonic flight. Most of the participants in the Short Courses prepared a docu ment based on their presentation for reproduction in the three vol umes. Some authors spent considerable time and energy going well beyond their oral presentation to provide a quality assessment of the state of the art in their area of expertise as of 1989 and 1991.

Book The Finite Volume Method in Computational Fluid Dynamics

Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 791 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Book Recent Numerical Advances in Fluid Mechanics

Download or read book Recent Numerical Advances in Fluid Mechanics written by Omer San and published by MDPI. This book was released on 2020-07-03 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.

Book Advances in Interdisciplinary Engineering

Download or read book Advances in Interdisciplinary Engineering written by Niraj Kumar and published by Springer Nature. This book was released on 2021-04-12 with total page 838 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME) 2020. This volume focuses on several emerging interdisciplinary areas involving mechanical engineering. Some of the topics covered include automobile engineering, mechatronics, applied mechanics, structural mechanics, hydraulic mechanics, human vibration, biomechanics, biomedical Instrumentation, ergonomics, biodynamic modeling, nuclear engineering, and agriculture engineering. The contents of this book will be useful for students, researchers as well as professionals interested in interdisciplinary topics of mechanical engineering.