Download or read book Wide Energy Bandgap Electronic Devices written by Fan Ren and published by World Scientific. This book was released on 2003 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents state-of-the-art GaN and SiC electronic devices, as well as detailed applications of these devices to power conditioning, r. f. base station infrastructure and high temperature electronics.
Download or read book Silicon And Beyond Advanced Device Models And Circuit Simulators written by Tor A Fjeldly and published by World Scientific. This book was released on 2000-04-20 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: The steady downscaling of device-feature size combined with a rapid increase in circuit complexity as well as the introduction of new device concepts based on non-silicon-material systems poses great challenges for device and circuit designers. One of the major tasks is the development of new and improved device models needed for accurate device and circuit design. Another task is the development of new circuit-simulation tools to handle very large and complex circuits. This book addresses both these issues with up-to-date reviews written by leading experts in the field.The first three chapters of the book discuss advanced device models both for existing technologies and for new, emerging technologies. Among the topics covered are models for MOSFETs, thin-film transitors (TFTs), and compound semiconductor devices, including GaAs HEMTs and HFETs, heterodimensional devices, quantum-tunneling devices, as well as wide-bandgap devices. Chapters 4 and 5 discuss advanced circuit simulators that hold promise for handling circuits of much higher complexity than what is possible for typical state-of-the-art circuit simulators today.
Download or read book Characterization of Wide Bandgap Power Semiconductor Devices written by Fei Wang and published by Institution of Engineering and Technology. This book was released on 2018-09-05 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the heart of modern power electronics converters are power semiconductor switching devices. The emergence of wide bandgap (WBG) semiconductor devices, including silicon carbide and gallium nitride, promises power electronics converters with higher efficiency, smaller size, lighter weight, and lower cost than converters using the established silicon-based devices. However, WBG devices pose new challenges for converter design and require more careful characterization, in particular due to their fast switching speed and more stringent need for protection.
Download or read book Simulation of Semiconductor Processes and Devices 1998 written by Kristin De Meyer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 1998 International Conference on Simulation of Semiconductor Processes and Devices and provides an open forum for the presentation of the latest results and trends in modeling and simulation of semiconductor equipment, processes and devices. Topics include: • semiconductor equipment simulation • process modeling and simulation • device modeling and simulation of complex structures • interconnect modeling • integrated systems for process, device, circuit simulation and optimisation • numerical methods and algorithms • compact modeling and parameter extraction • modeling for RF applications • simulation and modeling of new devices (heterojunction based, SET’s, quantum effect devices, laser based ...)
Download or read book SiC Power Module Design written by Alberto Castellazzi and published by IET. This book was released on 2021-12-09 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap semiconductor devices offer higher efficiency, smaller size, less weight, and longer lifetime, with applications in power grid electronics and electromobility. This book describes the state of advanced packaging solutions for novel wide-band-gap semiconductors, specifically silicon carbide (SiC) MOSFETs and diodes.
Download or read book Wide Bandgap Semiconductor Power Devices written by B. Jayant Baliga and published by Woodhead Publishing. This book was released on 2018-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide Bandgap Semiconductor Power Devices: Materials, Physics, Design and Applications provides readers with a single resource on why these devices are superior to existing silicon devices. The book lays the groundwork for an understanding of an array of applications and anticipated benefits in energy savings. Authored by the Founder of the Power Semiconductor Research Center at North Carolina State University (and creator of the IGBT device), Dr. B. Jayant Baliga is one of the highest regarded experts in the field. He thus leads this team who comprehensively review the materials, device physics, design considerations and relevant applications discussed. - Comprehensively covers power electronic devices, including materials (both gallium nitride and silicon carbide), physics, design considerations, and the most promising applications - Addresses the key challenges towards the realization of wide bandgap power electronic devices, including materials defects, performance and reliability - Provides the benefits of wide bandgap semiconductors, including opportunities for cost reduction and social impact
Download or read book Ultra wide Bandgap Semiconductor Materials written by Meiyong Liao and published by Elsevier. This book was released on 2019-06-18 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultra-wide Bandgap Semiconductors (UWBG) covers the most recent progress in UWBG materials, including sections on high-Al-content AlGaN, diamond, B-Ga2O3, and boron nitrides. The coverage of these materials is comprehensive, addressing materials growth, physics properties, doping, device design, fabrication and performance. The most relevant and important applications are covered, including power electronics, RF electronics and DUV optoelectronics. There is also a chapter on novel structures based on UWBG, such as the heterojunctions, the low-dimensional structures, and their devices. This book is ideal for materials scientists and engineers in academia and R&D searching for materials superior to silicon carbide and gallium nitride. - Provides a one-stop resource on the most promising ultra-wide bandgap semiconducting materials, including high-Al-content AlGaN, diamond, ß-Ga2O3, boron nitrides, and low-dimensional materials - Presents comprehensive coverage, from materials growth and properties, to device design, fabrication and performance - Features the most relevant applications, including power electronics, RF electronics and DUV optoelectronics
- Author : Kaj J. Grahn
- Publisher :
- Release : 1993
- ISBN : 9789516664012
- Pages : 84 pages
Two dimensional numerical modeling of advanced semiconductor devices from the physical point of view
Download or read book Two dimensional numerical modeling of advanced semiconductor devices from the physical point of view written by Kaj J. Grahn and published by . This book was released on 1993 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Springer Handbook of Semiconductor Devices written by Massimo Rudan and published by Springer Nature. This book was released on 2022-11-10 with total page 1680 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Springer Handbook comprehensively covers the topic of semiconductor devices, embracing all aspects from theoretical background to fabrication, modeling, and applications. Nearly 100 leading scientists from industry and academia were selected to write the handbook's chapters, which were conceived for professionals and practitioners, material scientists, physicists and electrical engineers working at universities, industrial R&D, and manufacturers. Starting from the description of the relevant technological aspects and fabrication steps, the handbook proceeds with a section fully devoted to the main conventional semiconductor devices like, e.g., bipolar transistors and MOS capacitors and transistors, used in the production of the standard integrated circuits, and the corresponding physical models. In the subsequent chapters, the scaling issues of the semiconductor-device technology are addressed, followed by the description of novel concept-based semiconductor devices. The last section illustrates the numerical simulation methods ranging from the fabrication processes to the device performances. Each chapter is self-contained, and refers to related topics treated in other chapters when necessary, so that the reader interested in a specific subject can easily identify a personal reading path through the vast contents of the handbook.
Download or read book Modeling And Electrothermal Simulation Of Sic Power Devices Using Silvaco Atlas written by Bejoy N Pushpakaran and published by World Scientific. This book was released on 2019-03-22 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary goal of this book is to provide a sound understanding of wide bandgap Silicon Carbide (SiC) power semiconductor device simulation using Silvaco© ATLAS Technology Computer Aided Design (TCAD) software. Physics-based TCAD modeling of SiC power devices can be extremely challenging due to the wide bandgap of the semiconductor material. The material presented in this book aims to shorten the learning curve required to start successful SiC device simulation by providing a detailed explanation of simulation code and the impact of various modeling and simulation parameters on the simulation results. Non-isothermal simulation to predict heat dissipation and lattice temperature rise in a SiC device structure under switching condition has been explained in detail. Key pointers including runtime error messages, code debugging, implications of using certain models and parameter values, and other factors beneficial to device simulation are provided based on the authors' experience while simulating SiC device structures. This book is useful for students, researchers, and semiconductor professionals working in the area of SiC semiconductor technology. Readers will be provided with the source code of several fully functional simulation programs that illustrate the use of Silvaco© ATLAS to simulate SiC power device structure, as well as supplementary material for download.Related Link(s)
Download or read book 3D TCAD Simulation for CMOS Nanoeletronic Devices written by Yung-Chun Wu and published by Springer. This book was released on 2017-06-19 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates how to use the Synopsys Sentaurus TCAD 2014 version for the design and simulation of 3D CMOS (complementary metal–oxide–semiconductor) semiconductor nanoelectronic devices, while also providing selected source codes (Technology Computer-Aided Design, TCAD). Instead of the built-in examples of Sentaurus TCAD 2014, the practical cases presented here, based on years of teaching and research experience, are used to interpret and analyze simulation results of the physical and electrical properties of designed 3D CMOSFET (metal–oxide–semiconductor field-effect transistor) nanoelectronic devices. The book also addresses in detail the fundamental theory of advanced semiconductor device design for the further simulation and analysis of electric and physical properties of semiconductor devices. The design and simulation technologies for nano-semiconductor devices explored here are more practical in nature and representative of the semiconductor industry, and as such can promote the development of pioneering semiconductor devices, semiconductor device physics, and more practically-oriented approaches to teaching and learning semiconductor engineering. The book can be used for graduate and senior undergraduate students alike, while also offering a reference guide for engineers and experts in the semiconductor industry. Readers are expected to have some preliminary knowledge of the field.
Download or read book Topics In High Field Transport In Semiconductors written by Kevin F Brennan and published by World Scientific. This book was released on 2001-07-31 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines some of the charge carrier transport issues encountered in the field of modern semiconductor devices and novel materials. Theoretical approaches to the understanding and modeling of the relevant physical phenomena, seen in devices that have very small spatial dimensions and that operate under high electric field strength, are described in papers written by leading experts and pioneers in this field. In addition, the book examines the transport physics encountered in novel materials such as wide band gap semiconductors (GaN, SiC, etc.) as well as organic semiconductors. Topics in High Field Transport in Semiconductors provides a comprehensive overview that will be beneficial to newcomers as well as engineers and researchers engaged in this exciting field.
Download or read book Advanced Computational Techniques for Renewable Energy Systems written by Mustapha Hatti and published by Springer Nature. This book was released on 2023-02-13 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, one hundred selected articles, in which the technology and science elite share, contribute to technology development, collaborate and evolve the latest cutting-edge technologies, open ecosystem resources, new innovative computing solutions, hands-on labs and tutorials, networking and community building, to ensure better integration of artificial intelligence into renewable energy systems. Innovation in computing continues at a growing pace. The key to success in this area is not only hardware, but also the ability to leverage rapid advances in artificial intelligence (including machine learning and deep learning), data analytics, data streaming, and cloud computing, which go hand in hand with intensive research activity on the underlying computational methods. The chapters in this book are organized into thematic sections on: advanced computing techniques; artificial intelligence; smart and sustainable cities; renewable energy systems; materials in renewable energy; smart energy efficiency; smart cities applications: recent developments and new trends; online, supervision of renewable energy platforms; predictive control in renewable systems; smart embedded systems for photovoltaic applications.
Download or read book Semiconductor Optoelectronic Devices written by Joachim Piprek and published by Elsevier. This book was released on 2013-10-22 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. - Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software - Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters - Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices
Download or read book The Physics of Semiconductor Devices written by R. K. Sharma and published by Springer. This book was released on 2019-01-31 with total page 1260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book disseminates the current knowledge of semiconductor physics and its applications across the scientific community. It is based on a biennial workshop that provides the participating research groups with a stimulating platform for interaction and collaboration with colleagues from the same scientific community. The book discusses the latest developments in the field of III-nitrides; materials & devices, compound semiconductors, VLSI technology, optoelectronics, sensors, photovoltaics, crystal growth, epitaxy and characterization, graphene and other 2D materials and organic semiconductors.
Download or read book Disruptive Wide Bandgap Semiconductors Related Technologies and Their Applications written by Yogesh Kumar Sharma and published by BoD – Books on Demand. This book was released on 2018-09-12 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: SiC and GaN devices have been around for some time. The first dedicated international conference on SiC and related devices, "ICSCRM," was held in Washington, DC, in 1987. But only recently, the commercialization of SiC and GaN devices has happened. Due to its material properties, Si as a semiconductor has limitations in high-temperature, high-voltage, and high-frequency regimes. With the help of SiC and GaN devices, it is possible to realize more efficient power systems. Devices manufactured from SiC and GaN have already been impacting different areas with their ability to outperform Si devices. Some of the examples are the telecommunications, automotive/locomotive, power, and renewable energy industries. To achieve the carbon emission targets set by different countries, it is inevitable to use these new technologies. This book attempts to cover all the important facets related to wide bandgap semiconductor technology, including new challenges posed by it. This book is intended for graduate students, researchers, engineers, and technology experts who have been working in the exciting fields of SiC and GaN power devices.
Download or read book Semiconductor Material and Device Characterization written by Dieter K. Schroder and published by John Wiley & Sons. This book was released on 2015-06-29 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.