EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advanced interpretable machine learning methods for clinical NGS big data of complex hereditary diseases     volume II

Download or read book Advanced interpretable machine learning methods for clinical NGS big data of complex hereditary diseases volume II written by Yudong Cai and published by Frontiers Media SA. This book was released on 2023-02-13 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advanced Interpretable Machine Learning Methods for Clinical NGS Big Data of Complex Hereditary Diseases  2nd Edition

Download or read book Advanced Interpretable Machine Learning Methods for Clinical NGS Big Data of Complex Hereditary Diseases 2nd Edition written by Yudong Cai and published by Frontiers Media SA. This book was released on 2021-07-01 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher’s note: This is a 2nd edition due to an article retraction

Book Advanced Interpretable Machine Learning Methods for Clinical NGS Big Data of Complex Hereditary Diseases

Download or read book Advanced Interpretable Machine Learning Methods for Clinical NGS Big Data of Complex Hereditary Diseases written by Yudong Cai and published by . This book was released on 2020 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Book Handbook of Machine Learning Applications for Genomics

Download or read book Handbook of Machine Learning Applications for Genomics written by Sanjiban Sekhar Roy and published by Springer Nature. This book was released on 2022-06-23 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, machine learning is playing a pivotal role in the progress of genomics. The applications of machine learning are helping all to understand the emerging trends and the future scope of genomics. This book provides comprehensive coverage of machine learning applications such as DNN, CNN, and RNN, for predicting the sequence of DNA and RNA binding proteins, expression of the gene, and splicing control. In addition, the book addresses the effect of multiomics data analysis of cancers using tensor decomposition, machine learning techniques for protein engineering, CNN applications on genomics, challenges of long noncoding RNAs in human disease diagnosis, and how machine learning can be used as a tool to shape the future of medicine. More importantly, it gives a comparative analysis and validates the outcomes of machine learning methods on genomic data to the functional laboratory tests or by formal clinical assessment. The topics of this book will cater interest to academicians, practitioners working in the field of functional genomics, and machine learning. Also, this book shall guide comprehensively the graduate, postgraduates, and Ph.D. scholars working in these fields.

Book Machine Learning Advanced Dynamic Omics Data Analysis for Precision Medicine

Download or read book Machine Learning Advanced Dynamic Omics Data Analysis for Precision Medicine written by Tao Zeng and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Precision medicine is being developed as a preventative, diagnostic and treatment tool to combat complex human diseases in a personalized manner. By utilizing high-throughput technologies, dynamic 'omics data including genetics, epi-genetics and even meta-genomics has produced temporal-spatial big biological datasets which can be associated with individual genotypes underlying pathogen progressive phenotypes. It is therefore necessary to investigate how to integrate these multi-scale 'omics datasets to distinguish the novel individual-specific disease causes from conventional cohort-common disease causes. Currently, machine learning plays an important role in biological and biomedical research, especially in the analysis of big 'omics data. However, in contrast to traditional big social data, 'omics datasets are currently always "small-sample-high-dimension", which causes overwhelming application problems and also introduces new challenges: (1) Big 'omics datasets can be extremely unbalanced, due to the difficulty of obtaining enough positive samples of such rare mutations or rare diseases; (2) A large number of machine learning models are "black box," which is enough to apply in social applications. However, in biological or biomedical fields, knowledge of the molecular mechanisms underlying any disease or biological study is necessary to deepen our understanding; (3) The genotype-phenotype association is a "white clue" captured in conventional big data studies. But identification of "causality" rather than association would be more helpful for physicians or biologists, as this can be used to determine an experimental target as the subject of future research. Therefore, to simultaneously improve the phenotype discrimination and genotype interpretability for complex diseases, it is necessary: To design and implement new machine learning technologies to integrate prior-knowledge with new 'omics datasets to provide transferable learning methods by combining multiple sources of data; To develop new network-based theories and methods to balance the trade-off between accuracy and interpretability of machine learning in biomedical and biological domains; To enhance the causality inference on "small-sample high dimension" data to capture the personalized causal relationship.

Book Big Data in Omics and Imaging

Download or read book Big Data in Omics and Imaging written by Momiao Xiong and published by CRC Press. This book was released on 2017-12-01 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Omics and Imaging: Association Analysis addresses the recent development of association analysis and machine learning for both population and family genomic data in sequencing era. It is unique in that it presents both hypothesis testing and a data mining approach to holistically dissecting the genetic structure of complex traits and to designing efficient strategies for precision medicine. The general frameworks for association analysis and machine learning, developed in the text, can be applied to genomic, epigenomic and imaging data. FEATURES Bridges the gap between the traditional statistical methods and computational tools for small genetic and epigenetic data analysis and the modern advanced statistical methods for big data Provides tools for high dimensional data reduction Discusses searching algorithms for model and variable selection including randomization algorithms, Proximal methods and matrix subset selection Provides real-world examples and case studies Will have an accompanying website with R code The book is designed for graduate students and researchers in genomics, bioinformatics, and data science. It represents the paradigm shift of genetic studies of complex diseases– from shallow to deep genomic analysis, from low-dimensional to high dimensional, multivariate to functional data analysis with next-generation sequencing (NGS) data, and from homogeneous populations to heterogeneous population and pedigree data analysis. Topics covered are: advanced matrix theory, convex optimization algorithms, generalized low rank models, functional data analysis techniques, deep learning principle and machine learning methods for modern association, interaction, pathway and network analysis of rare and common variants, biomarker identification, disease risk and drug response prediction.

Book Patterns in Big Data Bioinformatics

Download or read book Patterns in Big Data Bioinformatics written by Mateusz Garbulowski and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biologically Interpretable Machine Learning Methods to Understand Gene Regulation for Disease Phenotypes

Download or read book Biologically Interpretable Machine Learning Methods to Understand Gene Regulation for Disease Phenotypes written by Ting Jin and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gene expression and regulation is a key molecular mechanism driving the development of human diseases, particularly at the cell type level, but it remains elusive. For example in many brain diseases, such as Alzheimer's disease (AD), understanding how cell-type gene expression and regulation change across multiple stages of AD progression is still challenging. Moreover, interindividual variability of gene expression and regulation is a known characteristic of the human brain and brain diseases. However, it is still unclear how interindividual variability affects personalized gene regulation in brain diseases including AD, thereby contributing to their heterogeneity. Recent technological advances have enabled the detection of gene regulation activities through multi-omics (i.e., genomics, transcriptomics, epigenomics, proteomics). In particular, emerging single-cell sequencing technologies (e.g., scRNA-seq, scATAC-seq) allow us to study functional genomics and gene regulation at the cell-type level. Moreover, these multi-omics data of populations (e.g., human individuals) provide a unique opportunity to study the underlying regulatory mechanisms occurring in brain disease progression and clinical phenotypes. For instance, PsychAD is a large project generating single-cell multi-omics data including many neuronal and glial cell types, aiming to understand the molecular mechanisms of neuropsychiatric symptoms of multiple brain diseases (e.g., AD, SCZ, ASD, Bipolar) from over 1,000 individuals. However, analyzing and integrating large-scale multi-omics data at the population level, as well as understanding the mechanisms of gene regulation, also remains a challenge. Machine learning is a powerful and emerging tool to decode the unique complexities and heterogeneity of human diseases. For instance, Beebe-Wang, Nicosia, et al. developed MD-AD, a multi-task neural network model to predict various disease phenotypes in AD patients using RNA-seq. Additionally, with advancements in graph neural networks, which possess enhanced capabilities to represent sophisticated gene network structures like gene regulation networks that control gene expression. Efforts have also been made to capture the gene regulation heterogeneity of brain diseases. For instance, Kim SY has applied graph convolutional networks to offer personalized diagnostic insights through population graphs that correspond with disease progression. However, many existing machine learning methods are often limited to constructing accurate models for disease phenotype prediction and frequently lack biological interpretability or personalized insights, especially in gene regulation. Therefore, to address these challenges, my Ph.D. works have developed three machine-learning methods designed to decode the gene regulation mechanisms of human diseases. First, in this dissertation, I will present scGRNom, a computational pipeline that integrates multi-omic data to construct cell-type gene regulatory networks (GRNs) linking non-coding regulatory elements. Next, I will introduce i-BrainMap an interpretable knowledge-guided graph neural network model to prioritize personalized cell type disease genes, regulatory linkages, and modules. Thirdly, I introduce ECMaker, a semi-restricted Boltzmann machine (semi-RBM) method for identifying gene networks to predict diseases and clinical phenotypes. Overall, all our interpretable machine learning models improve phenotype prediction, prioritize key genes and networks associated with disease phenotypes, and are further aimed at enhancing our understanding of gene regulatory mechanisms driving disease progression and clinical phenotypes.

Book Interpretable Machine Learning Methods for Regulatory and Disease Genomics

Download or read book Interpretable Machine Learning Methods for Regulatory and Disease Genomics written by Peyton Greis Greenside and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: It is an incredible feat of nature that the same genome contains the code to every cell in each living organism. From this same genome, each unique cell type gains a different program of gene expression that enables the development and function of an organism throughout its lifespan. The non-coding genome - the ~98 of the genome that does not code directly for proteins - serves an important role in generating the diverse programs of gene expression turned on in each unique cell state. A complex network of proteins bind specific regulatory elements in the non-coding genome to regulate the expression of nearby genes. While basic principles of gene regulation are understood, the regulatory code of which factors bind together at which genomic elements to turn on which genes remains to be revealed. Further, we do not understand how disruptions in gene regulation, such as from mutations that fall in non-coding regions, ultimately lead to disease or other changes in cell state. In this work we present several methods developed and applied to learn the regulatory code or the rules that govern non-coding regions of the genome and how they regulate nearby genes. We first formulate the problem as one of learning pairs of sequence motifs and expressed regulator proteins that jointly predict the state of the cell, such as the cell type specific gene expression or chromatin accessibility. Using pre-engineered sequence features and known expression, we use a paired-feature boosting approach to build an interpretable model of how the non-coding genome contributes to cell state. We also demonstrate a novel improvement to this method that takes into account similarities between closely related cell types by using a hierarchy imposed on all of the predicted cell states. We apply this method to discover validated regulators of tadpole tail regeneration and to predict protein-ligand binding interactions. Recognizing the need for improved sequence features and stronger predictive performance, we then move to a deep learning modeling framework to predict epigenomic phenotypes such as chromatin accessibility from just underlying DNA sequence. We use deep learning models, specifically multi-task convolutional neural networks, to learn a featurization of sequences over several kilobases long and their mapping to a functional phenotype. We develop novel architectures that encode principles of genomics in models typically designed for computer vision, such as incorporating reverse complementation and the 3D structure of the genome. We also develop methods to interpret traditionally ``black box" neural networks by 1) assigning importance scores to each input sequence to the model, 2) summarizing non-redundant patterns learned by the model that are predictive in each cell type, and 3) discovering interactions learned by the model that provide indications as to how different non-coding sequence features depend on each other. We apply these methods in the system of hematopoiesis to interpret chromatin dynamics across differentiation of blood cell types, to understand immune stimulation, and to interpret immune disease-associated variants that fall in non-coding regions. We demonstrate strong performance of our boosting and deep learning models and demonstrate improved performance of these machine learning frameworks when taking into account existing knowledge about the biological system being modeled. We benchmark our interpretation methods using gold standard systems and existing experimental data where available. We confirm existing knowledge surrounding essential factors in hematopoiesis, and also generate novel hypotheses surrounding how factors interact to regulate differentiation. Ultimately our work provides a set of tools for researchers to probe and understand the non-coding genome and its role in controlling gene expression as well as a set of novel insights surrounding how hematopoiesis is controlled on many scales from global quantification of regulatory sequence to interpretation of individual variants.

Book Developing Machine Learning and Statistical Methods for the Analysis of Genetics and Genomics

Download or read book Developing Machine Learning and Statistical Methods for the Analysis of Genetics and Genomics written by Jiajin Li and published by . This book was released on 2021 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the development of next-generation sequencing technologies, we can detect numerous genetic variants associated with many diseases or complex traits over the past decades. Genome-wide association studies (GWAS) have been one of the most effective methods to identify those variants. It discovers disease-associated variants by comparing the genetic information between controls and cases. This approach is simple and effective and has been used by many studies. Before performing GWAS, we need to detect the genetic variants of the sample population. A subset of these variants, however, may have poor sequencing quality due to limitations in NGS or variant callers. In genetic studies that analyze a large number of sequenced individuals, it is critical to detect and remove those variants with poor quality as they may cause spurious findings. Here, I will present ForestQC, an efficient statistical tool for performing quality control on variants identified from NGS data by combining a traditional filtering approach and a machine learning approach, which outperforms widely used methods by considerably improving the quality of variants to be included in the analysis. Once this association is identified, the next step is to understand the genetic mechanism of rare variants on how the variants influence diseases, especially whether or how they regulate gene expression as they may affect diseases through gene regulation. However, it is challenging to identify the regulatory effects of rare variants because it often requires large sample sizes and the existing statistical approaches are not optimized for it. To improve statistical power, I will introduce a new approach, LRT-q, based on a likelihood ratio test that combines effects of multiple rare variants in a nonlinear manner and has higher power than previous approaches. I apply LRT-q to the GTEx dataset and find many novel biological insights. Recent studies have shown that omics data can be used for automatic disease diagnosis with machine learning algorithms. I will introduce an accurate and automated machine learning pipeline for the diagnosis of atopic dermatitis (AD) based on transcriptome and microbiota data. I will demonstrate that this classifier can accurately differentiate subjects with AD and healthy individuals. It also identifies a set of genes and microorganisms that are predictive for AD. I will show that they are directly or indirectly associated with AD.

Book Genomic Medicine

    Book Details:
  • Author : Dhavendra Kumar
  • Publisher : Oxford Monographs on Medical G
  • Release : 2014-10-15
  • ISBN : 019989602X
  • Pages : 853 pages

Download or read book Genomic Medicine written by Dhavendra Kumar and published by Oxford Monographs on Medical G. This book was released on 2014-10-15 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preceded by Genomics and clinical medicine / edited by Dhavendra Kumar. [First edition]. 2008.

Book Artificial Intelligence in Healthcare

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. Highlights different data techniques in healthcare data analysis, including machine learning and data mining Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks Includes applications and case studies across all areas of AI in healthcare data

Book Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques  Tools  and Applications

Download or read book Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques Tools and Applications written by K. G. Srinivasa and published by Springer Nature. This book was released on 2020-01-30 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied in fields such as drug design, health supplements, gene therapy, proteomics and agriculture.

Book Applied Genomics and Public Health

Download or read book Applied Genomics and Public Health written by George P. Patrinos and published by Academic Press. This book was released on 2019-11-13 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Genomics and Public Health examines the interdisciplinary and growing area of how evidence-based genomic knowledge can be applied to public health, population health, healthcare and health policies. The book gathers experts from a variety of disciplines, including life sciences, social sciences, and health care to develop a comprehensive overview of the field. In addition, the book delves into subjects such as pharmacogenomics, genethics, big data, data translation and analysis, economic evaluation, genomic awareness and education, sociology, pricing and reimbursement, policy measures and economic evaluation in genomic medicine. This book is essential reading for researchers and students exploring applications of genomics to population and public health. In addition, it is ideal for those in the biomedical sciences, medical sociologists, healthcare professionals, nurses, regulatory bodies and health economists interested in learning more about this growing field. Explores the growing application of genomics to population and public health Features internationally renowned contributors from a variety of related fields Contains chapters on important topics such as genomic data sharing, genethics and public health genomics, genomics and sociology, and regulatory aspects of genomic medicine and pharmacogenomics

Book Speech and Computer

    Book Details:
  • Author : Alexey Karpov
  • Publisher : Springer
  • Release : 2017-09-01
  • ISBN : 3319664298
  • Pages : 845 pages

Download or read book Speech and Computer written by Alexey Karpov and published by Springer. This book was released on 2017-09-01 with total page 845 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 19th International Conference on Speech and Computer, SPECOM 2017, held in Hatfield, UK, in September 2017. The 80 papers presented in this volume were carefully reviewed and selected from 150 submissions. The papers present current research in the area of computer speech processing (recognition, synthesis, understanding etc.) and related domains (including signal processing, language and text processing, computational paralinguistics, multi-modal speech processing, human-computer interaction).

Book Applications of Machine Learning

Download or read book Applications of Machine Learning written by Prashant Johri and published by Springer Nature. This book was released on 2020-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Book Next Generation Sequencing Data Analysis

Download or read book Next Generation Sequencing Data Analysis written by Xinkun Wang and published by CRC Press. This book was released on 2016-04-06 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Guide to the Highly Dynamic Area of Massively Parallel SequencingThe development of genome and transcriptome sequencing technologies has led to a paradigm shift in life science research and disease diagnosis and prevention. Scientists are now able to see how human diseases and phenotypic changes are connected to DNA mutation, polymorphi