EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary

Download or read book Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics Executive Summary written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Research and development (R & D) activities on advanced, higher performance Light Water Reactor (LWR) fuels have been ongoing for the last few years. Following the unfortunate March 2011 events at the Fukushima Nuclear Power Plant in Japan, the R & D shifted toward enhancing the accident tolerance of LWRs. Qualitative attributes for fuels with enhanced accident tolerance, such as improved reaction kinetics with steam resulting in slower hydrogen generation rate, provide guidance for the design and development of fuels and cladding with enhanced accident tolerance. A common set of technical metrics should be established to aid in the optimization and down selection of candidate designs on a more quantitative basis. "Metrics" describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. This report describes a proposed technical evaluation methodology that can be applied to evaluate the ability of each concept to meet performance and safety goals relative to the current UO2 - zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed toward qualification.

Book Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

Download or read book Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The safe, reliable and economic operation of the nation's nuclear power reactor fleet has always been a top priority for the United States' nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry's success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, "metrics" describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 - zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly insertion into a commercial reactor within the desired timeframe (by 2022).

Book Metrics for the Evaluation of Light Water Reactor Accident Tolerant Fuel

Download or read book Metrics for the Evaluation of Light Water Reactor Accident Tolerant Fuel written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The safe, reliable and economic operation of the nation's nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry's success. Enhancing the accident tolerance of LWRs became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of accident tolerant fuel (ATF) development is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. The U.S. Department of Energy is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This paper summarizes technical evaluation methodology proposed in the U.S. to aid in the optimization and down-selection of candidate ATF designs. This methodology will continue to be refined via input from the research community and industry, such that it is available to support the planned down-selection of ATF concepts in 2016.

Book Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors

Download or read book Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors written by and published by . This book was released on 2014 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: The safe, reliable and economic operation of the nation's nuclear power reactor fleet has always been a top priority for the United States' nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels remains central to industry's success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. Thanks to efforts by both the U.S. government and private companies, nuclear technologies have advanced over time to optimize economic operations in nuclear utilities while ensuring safety. One of the missions of the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) is to develop nuclear fuels and claddings with enhanced accident tolerance. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, DOE-NE initiated Accident Tolerant Fuel (ATF) development as a primary component of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC). Prior to the unfortunate events at Fukushima, the emphasis for advanced LWR fuel development was on improving nuclear fuel performance in terms of increased burnup for waste minimization, increased power density for power upgrades, and increased fuel reliability. Fukushima highlighted some undesirable performance characteristics of the standard fuel system during severe accidents, including accelerated hydrogen production under certain circumstances. Thus, fuel system behavior under design basis accident and severe accident conditions became the primary focus for advanced fuels while still striving for improved performance under normal operating conditions to ensure that proposed new fuels will be economically viable. The goal of the ATF development effort is to demonstrate performance with a lead test assembly or lead test rod (LTR) or lead test assembly (LTA) irradiation in a commercial power reactor by 2022. Research and development activities are being conducted at multiple DOE national laboratories, universities and within industry with support from the DOE program. A brief program overview and status are provided.

Book Overview of the U S  DOE Accident Tolerant Fuel Development Program

Download or read book Overview of the U S DOE Accident Tolerant Fuel Development Program written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative metrics. A companion paper in these proceedings provides an update on the status of establishing these quantitative metrics for accident tolerant LWR fuel. 1 The United States FCRD Advanced Fuels Campaign has embarked on an aggressive schedule for development of enhanced accident tolerant LWR fuels. The goal of developing such a fuel system that can be deployed in the U.S. LWR fleet in the next 10 to 20 years supports the sustainability of clean nuclear power generation in the United States.

Book Enhanced Accident Tolerant LWR Fuels

Download or read book Enhanced Accident Tolerant LWR Fuels written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

Book Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report

Download or read book Enhanced Accident Tolerant LWR Fuels National Metrics Workshop Report written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Evaluation Metrics Applied to Accident Tolerant Fuels

Download or read book Evaluation Metrics Applied to Accident Tolerant Fuels written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The safe, reliable, and economic operation of the nation's nuclear power reactor fleet has always been a top priority for the United States' nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry's success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy's (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuels and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.

Book Advanced Fuels Campaign FY 2014 Accomplishments Report

Download or read book Advanced Fuels Campaign FY 2014 Accomplishments Report written by and published by . This book was released on 2014 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a ?goal-oriented science-based approach.? In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a ?goal-oriented, science-based approach? aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word ?fuel? is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.

Book Light Water Reactor Accident Tolerant Fuels Irradiation Testing

Download or read book Light Water Reactor Accident Tolerant Fuels Irradiation Testing written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R & D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirements for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL's Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.

Book Neutronic and Economic Evaluation of Accident Tolerant Fuel Concepts for Light Water Reactors

Download or read book Neutronic and Economic Evaluation of Accident Tolerant Fuel Concepts for Light Water Reactors written by Ian Younker and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Accident tolerant fuels (ATF) are designed to mitigate the detrimental interaction betweenzirconium-alloy cladding and high temperature steam found during beyond design basis accident conditions. Two ATF concepts under consideration are: (1) Coating the exterior ofzirconium-alloy cladding with thin ceramics to limit the zirconium available for reaction withhigh-temperature steam; (2) Replacing zirconium alloys with alternative materials possessingslower oxidation kinetics and reduced hydrogen production. ATF concepts are expected to workwithin the design framework of current and future light water reactors, and for that reason theymust match or exceed the neutronic and economic performance of conventional fuel. This studyanalyzed the neutronic performance and estimated the economic impact of the two previouslydescribed ATF concepts for use in both pressurized water reactors (PWRs) and boiling waterreactors (BWRs).For PWRs findings show ceramic coatings should remain 10-30 m thick to limit neutronicpenalty and reduce fuel costs. For alternative cladding materials, SiC features reduced absorptionwhile other alloys (FeCrAl, TZM, Alloy 33 , and HT-9) enhance absorption compared to reference.Parametric analyses conclude reference performance metrics can be met by employing 90-160m thick clad when the clad inner diameter remains constant or 210-280 m when clad outerdiameter remains constant. For cladding thicknesses between minimum and reference valuesenrichment must increase 0.39-1.74% depending on alloy and geometry. Alternative claddingmaterials may reduce nuclear power plant prot up to $623 M over the 40-year plant lifetime.When incorporated into BWRs, these ATF concepts double neutronic penalties due to largerquantities of zirconium alloy.

Book Analysis of Options and Experimental Examination of Fuels for Water Cooled Reactors with Increased Accident Tolerance  ACTOF   Chinese Edition

Download or read book Analysis of Options and Experimental Examination of Fuels for Water Cooled Reactors with Increased Accident Tolerance ACTOF Chinese Edition written by IAEA and published by . This book was released on 2022-12-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is high interest in new fuel types with increased accident tolerance. These range from using an oxidation resistant coating on zirconium based cladding to alternate fuel and cladding materials. These new fuels/claddings under development must be licensed before being deployed industrially and therefore research is being undertaken to assess their behaviour in various conditions. This publication arises from an IAEA coordinated research project (CRP) dealing with the acquisition of data through experiments on new fuel types and cladding materials and the development of modelling capacity to predict the behaviour of the components and the integral performance of accident tolerant fuel designs under normal and transient conditions. Demonstrations of improvements under severe accident conditions were documented. Several coated cladding materials were produced, tested, characterized and analysed in round robin tests carried out within the CRP. For improvement and validation of fuel performance codes, several benchmarks were organized to compare and analyse predictions of the extended codes. The findings and conclusions of the CRP are summarized in this publication.

Book Accident Tolerant Fuel Concepts for Light Water Reactors

Download or read book Accident Tolerant Fuel Concepts for Light Water Reactors written by International Atomic Energy Agency and published by IAEA Tecdoc Series No. 1797. This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a record of a Technical Meeting on Accident Tolerant Fuel Concepts for Light Water Reactors, held at Oak Ridge National Laboratories in 2014, to consider the early stages of research and development into accident tolerant fuel.

Book Analysis of Options and Experimental Examination of Fuels for Water Cooled Reactors with Increased Accident Tolerance  Actof

Download or read book Analysis of Options and Experimental Examination of Fuels for Water Cooled Reactors with Increased Accident Tolerance Actof written by International Atomic Energy Agency and published by . This book was released on 2020-10-12 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is high interest in new fuel types with increased accident tolerance. These range from using an oxidation resistant coating on zirconium based cladding to alternate fuel and cladding materials. These new fuels/claddings under development must be licensed before being deployed industrially and therefore research is being undertaken to assess their behaviour in various conditions. This publication arises from an IAEA coordinated research project (CRP) dealing with the acquisition of data through experiments on new fuel types and cladding materials and the development of modelling capacity to predict the behaviour of the components and the integral performance of accident tolerant fuel designs under normal and transient conditions. Demonstrations of improvements under severe accident conditions were documented. Several coated cladding materials were produced, tested, characterized and analysed in round robin tests carried out within the CRP. For improvement and validation of fuel performance codes, several benchmarks were organized to compare and analyse predictions of the extended codes. The findings and conclusions of the CRP are summarized in this publication.

Book Accident Tolerant Fuel Analysis

Download or read book Accident Tolerant Fuel Analysis written by and published by . This book was released on 2014 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R & D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced "RISMC toolkit" that enables more accurate representation of NPP safety margin. In order to carry out the R & D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional "accident-tolerant" (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

Book ANALYSIS OF OPTIONS AND EXPERIMENTAL EXAMINATION OF FUELS FOR WATER COOLED REACTORS WITH    INCREASED ACCIDENT TOLERANCE  ACTOF

Download or read book ANALYSIS OF OPTIONS AND EXPERIMENTAL EXAMINATION OF FUELS FOR WATER COOLED REACTORS WITH INCREASED ACCIDENT TOLERANCE ACTOF written by IAEA. and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Enhanced Accident Tolerant Fuels for LWRS   A Preliminary Systems Analysis

Download or read book Enhanced Accident Tolerant Fuels for LWRS A Preliminary Systems Analysis written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy - UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.