EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Additive Runge Kutta Schemes for Convection diffusion reaction Equations

Download or read book Additive Runge Kutta Schemes for Convection diffusion reaction Equations written by Christopher Alan Kennedy and published by . This book was released on 2001 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N=2, additive Runge-Kutta ARK methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK methods have vanishing stability functions for very large values of the stiff scaled eigenvalue and retain high stability efficiency in the absence of stiffness.

Book Additive Runge Kutta Schemes for Convection Diffusion Reaction Equations

Download or read book Additive Runge Kutta Schemes for Convection Diffusion Reaction Equations written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-05-29 with total page 54 pages. Available in PDF, EPUB and Kindle. Book excerpt: Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N = 2, additive Runge-Kutta ARK2 methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK2 methods have vanishing stability functions for very large values of the stiff scaled eigenvalue, z(exp [I]) goes to infinity, and retain high stability efficiency in the absence of stiffness, z(exp [I]) goes to zero. Extrapolation-type stage-value predictors are provided based on dense-output formulae. Optimized methods minimize both leading order ARK2 error terms and Butcher coefficient magnitudes as well as maximize conservation properties. Numerical tests of the new schemes on a CDR problem show negligible stiffness leakage and near classical order convergence rates. However, tests on three simple singular-perturbation problems reveal generally predictable order reduction. Error control is best managed with a PID-controller. While results for the fifth-order method are disappointing, both the new third- and fourth-order methods are at least as efficient as existing ARK2 methods while offering error control and stage-value predictors.Kennedy, Christopher A. and Carpenter, Mark H.Langley Research CenterCONVECTION-DIFFUSION EQUATION; RUNGE-KUTTA METHOD; COMPOSITE FUNCTIONS; ACCURACY; NUMERICAL STABILITY; CONSERVATION

Book Numerical Solution of Time Dependent Advection Diffusion Reaction Equations

Download or read book Numerical Solution of Time Dependent Advection Diffusion Reaction Equations written by Willem Hundsdorfer and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unique book on Reaction-Advection-Diffusion problems

Book Computational Fluid Dynamics

Download or read book Computational Fluid Dynamics written by Jiri Blazek and published by Butterworth-Heinemann. This book was released on 2015-04-23 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. Will provide you with the knowledge required to develop and understand modern flow simulation codes Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques

Book Handbook of Numerical Methods for Hyperbolic Problems

Download or read book Handbook of Numerical Methods for Hyperbolic Problems written by Remi Abgrall and published by Elsevier. This book was released on 2016-11-17 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. Provides detailed, cutting-edge background explanations of existing algorithms and their analysis Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications Written by leading subject experts in each field who provide breadth and depth of content coverage

Book The Finite Element Method in Electromagnetics

Download or read book The Finite Element Method in Electromagnetics written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-02-18 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The Finite Element Method in Electromagnetics, Third Edition explains the method’s processes and techniques in careful, meticulous prose and covers not only essential finite element method theory, but also its latest developments and applications—giving engineers a methodical way to quickly master this very powerful numerical technique for solving practical, often complicated, electromagnetic problems. Featuring over thirty percent new material, the third edition of this essential and comprehensive text now includes: A wider range of applications, including antennas, phased arrays, electric machines, high-frequency circuits, and crystal photonics The finite element analysis of wave propagation, scattering, and radiation in periodic structures The time-domain finite element method for analysis of wideband antennas and transient electromagnetic phenomena Novel domain decomposition techniques for parallel computation and efficient simulation of large-scale problems, such as phased-array antennas and photonic crystals Along with a great many examples, The Finite Element Method in Electromagnetics is an ideal book for engineering students as well as for professionals in the field.

Book Numerical Simulations of Incompressible Flows

Download or read book Numerical Simulations of Incompressible Flows written by M. M. Hafez and published by World Scientific. This book was released on 2003 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Consists mainly of papers presented at a workshop ... held in Half Moon Bay, California, June 19-21, 2001 ... to honor Dr. Dochan Kwak on the occasion of his 60th birthday ... organized by M. Hafez of University of California Davis and Dong Ho Lee of Seoul National University"--Dedication, p. ix.

Book Decomposition Methods for Differential Equations

Download or read book Decomposition Methods for Differential Equations written by Juergen Geiser and published by CRC Press. This book was released on 2009-05-20 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Decomposition Methods for Differential Equations: Theory and Applications describes the analysis of numerical methods for evolution equations based on temporal and spatial decomposition methods. It covers real-life problems, the underlying decomposition and discretization, the stability and consistency analysis of the decomposition methods, and num

Book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

Download or read book Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018 written by Spencer J. Sherwin and published by Springer Nature. This book was released on 2020-08-11 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.

Book Recent Advances in Numerical Methods for Hyperbolic PDE Systems

Download or read book Recent Advances in Numerical Methods for Hyperbolic PDE Systems written by María Luz Muñoz-Ruiz and published by Springer Nature. This book was released on 2021-05-25 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.

Book Numerical Solutions of Partial Differential Equations

Download or read book Numerical Solutions of Partial Differential Equations written by Silvia Bertoluzza and published by Springer Science & Business Media. This book was released on 2009-03-13 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents some of the latest developments in numerical analysis and scientific computing. Specifically, it covers central schemes, error estimates for discontinuous Galerkin methods, and the use of wavelets in scientific computing.

Book Numerical schemes for multi species BGK equations based on a variational procedure

Download or read book Numerical schemes for multi species BGK equations based on a variational procedure written by Sandra Warnecke and published by BoD – Books on Demand. This book was released on 2022-10-11 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many applications require reliable numerical simulations of realistic set-ups e.g. plasma physics. This book gives a short introduction into kinetic models of gas mixtures describing the time evolution of rarefied gases and plasmas. Recently developed models are presented which extend existing literature by including more physical phenomena. We develop a numerical scheme for these more elaborated equations. The scheme is proven to maintain the physical properties of the models at the discrete level. We show several numerical test cases inspired by physical experiments.

Book Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws

Download or read book Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws written by Rainer Ansorge and published by Springer Science & Business Media. This book was released on 2012-09-14 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: In January 2012 an Oberwolfach workshop took place on the topic of recent developments in the numerics of partial differential equations. Focus was laid on methods of high order and on applications in Computational Fluid Dynamics. The book covers most of the talks presented at this workshop.

Book Navier stokes Equations In Planar Domains

Download or read book Navier stokes Equations In Planar Domains written by Matania Ben-artzi and published by World Scientific. This book was released on 2013-03-07 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume deals with the classical Navier-Stokes system of equations governing the planar flow of incompressible, viscid fluid. It is a first-of-its-kind book, devoted to all aspects of the study of such flows, ranging from theoretical to numerical, including detailed accounts of classical test problems such as “driven cavity” and “double-driven cavity”.A comprehensive treatment of the mathematical theory developed in the last 15 years is elaborated, heretofore never presented in other books. It gives a detailed account of the modern compact schemes based on a “pure streamfunction” approach. In particular, a complete proof of convergence is given for the full nonlinear problem.This volume aims to present a variety of numerical test problems. It is therefore well positioned as a reference for both theoretical and applied mathematicians, as well as a text that can be used by graduate students pursuing studies in (pure or applied) mathematics, fluid dynamics and mathematical physics./a

Book Annual Research Briefs

Download or read book Annual Research Briefs written by Center for Turbulence Research (U.S.) and published by . This book was released on 2008 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Performance Computing in Science and Engineering  20

Download or read book High Performance Computing in Science and Engineering 20 written by Wolfgang E. Nagel and published by Springer Nature. This book was released on 2022-01-01 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2020. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

Book Computational Fluid and Solid Mechanics 2003

Download or read book Computational Fluid and Solid Mechanics 2003 written by K.J Bathe and published by Elsevier. This book was released on 2003-06-02 with total page 2524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics. Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design. The eight tasks are: The automatic solution of mathematical models Effective numerical schemes for fluid flows The development of an effective mesh-free numerical solution method The development of numerical procedures for multiphysics problems The development of numerical procedures for multiscale problems The modelling of uncertainties The analysis of complete life cycles of systems Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features Bridges the gap between academic researchers and practitioners in industry Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis