Download or read book Adaptive Sampling written by Steven K. Thompson and published by Wiley-Interscience. This book was released on 1996-06-07 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a viable solution to the long-standing problem of estimating the abundance of rare, clustered populations, adaptive sampling designs are rapidly gaining prominence in the natural and social sciences as well as in other fields with inherently difficult sampling situations. In marked contrast to conventional sampling designs, in which the entire sample of units to be observed is fixed prior to the survey, adaptive sampling strategies allow for increased sampling intensity depending upon observations made during the survey. For example, in a survey to assess the abundance of a rare animal species, neighboring sites may be added to the sample whenever the species is encountered during the survey. In an epidemiological survey of a contagious or genetically linked disease, sampling intensity may be increased whenever prevalence of the disease is encountered. Written by two acknowledged experts in this emerging field, this book offers researchers their first comprehensive introduction to adaptive sampling. An ideal reference for statisticians conducting research in survey designs and spatial statistics as well as researchers working in the environmental, ecological, public health, and biomedical sciences. Adaptive Sampling: Provides a comprehensive, fully integrated introduction to adaptive sampling theory and practice Describes recent research findings Introduces readers to a wide range of adaptive sampling strategies and techniques Includes numerous real-world examples from environmental pollution studies, surveys of rare animal and plant species, studies of contagious diseases, marketing surveys, mineral and fossil-fuel assessments, and more
Download or read book Adaptive Sampling Designs written by George A.F. Seber and published by Springer Science & Business Media. This book was released on 2012-10-23 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations. Written by two acknowledged experts in the field of adaptive sampling.
Download or read book Advanced Sampling Methods written by Raosaheb Latpate and published by Springer Nature. This book was released on 2021-05-07 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses all major topics on survey sampling and estimation. It covers traditional as well as advanced sampling methods related to the spatial populations. The book presents real-world applications of major sampling methods and illustrates them with the R software. As a large sample size is not cost-efficient, this book introduces a new method by using the domain knowledge of the negative correlation between the variable of interest and the auxiliary variable in order to control the size of a sample. In addition, the book focuses on adaptive cluster sampling, rank-set sampling and their applications in real life. Advance methods discussed in the book have tremendous applications in ecology, environmental science, health science, forestry, bio-sciences, and humanities. This book is targeted as a text for undergraduate and graduate students of statistics, as well as researchers in various disciplines.
Download or read book Sampling written by Steven K. Thompson and published by John Wiley & Sons. This book was released on 2012-03-13 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treatment of both classical and modern sampling design and estimation methods, along with sampling methods for rare, clustered, and hard-to-detect populations. This Third Edition retains the general organization of the two previous editions, but incorporates extensive new material—sections, exercises, and examples—throughout. Inside, readers will find all-new approaches to explain the various techniques in the book; new figures to assist in better visualizing and comprehending underlying concepts such as the different sampling strategies; computing notes for sample selection, calculation of estimates, and simulations; and more. Organized into six sections, the book covers basic sampling, from simple random to unequal probability sampling; the use of auxiliary data with ratio and regression estimation; sufficient data, model, and design in practical sampling; useful designs such as stratified, cluster and systematic, multistage, double and network sampling; detectability methods for elusive populations; spatial sampling; and adaptive sampling designs. Featuring a broad range of topics, Sampling, Third Edition serves as a valuable reference on useful sampling and estimation methods for researchers in various fields of study, including biostatistics, ecology, and the health sciences. The book is also ideal for courses on statistical sampling at the upper-undergraduate and graduate levels.
Download or read book Simulation and the Monte Carlo Method written by Reuven Y. Rubinstein and published by John Wiley & Sons. This book was released on 2016-10-21 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible new edition explores the major topics in Monte Carlo simulation that have arisen over the past 30 years and presents a sound foundation for problem solving Simulation and the Monte Carlo Method, Third Edition reflects the latest developments in the field and presents a fully updated and comprehensive account of the state-of-the-art theory, methods and applications that have emerged in Monte Carlo simulation since the publication of the classic First Edition over more than a quarter of a century ago. While maintaining its accessible and intuitive approach, this revised edition features a wealth of up-to-date information that facilitates a deeper understanding of problem solving across a wide array of subject areas, such as engineering, statistics, computer science, mathematics, and the physical and life sciences. The book begins with a modernized introduction that addresses the basic concepts of probability, Markov processes, and convex optimization. Subsequent chapters discuss the dramatic changes that have occurred in the field of the Monte Carlo method, with coverage of many modern topics including: Markov Chain Monte Carlo, variance reduction techniques such as importance (re-)sampling, and the transform likelihood ratio method, the score function method for sensitivity analysis, the stochastic approximation method and the stochastic counter-part method for Monte Carlo optimization, the cross-entropy method for rare events estimation and combinatorial optimization, and application of Monte Carlo techniques for counting problems. An extensive range of exercises is provided at the end of each chapter, as well as a generous sampling of applied examples. The Third Edition features a new chapter on the highly versatile splitting method, with applications to rare-event estimation, counting, sampling, and optimization. A second new chapter introduces the stochastic enumeration method, which is a new fast sequential Monte Carlo method for tree search. In addition, the Third Edition features new material on: • Random number generation, including multiple-recursive generators and the Mersenne Twister • Simulation of Gaussian processes, Brownian motion, and diffusion processes • Multilevel Monte Carlo method • New enhancements of the cross-entropy (CE) method, including the “improved” CE method, which uses sampling from the zero-variance distribution to find the optimal importance sampling parameters • Over 100 algorithms in modern pseudo code with flow control • Over 25 new exercises Simulation and the Monte Carlo Method, Third Edition is an excellent text for upper-undergraduate and beginning graduate courses in stochastic simulation and Monte Carlo techniques. The book also serves as a valuable reference for professionals who would like to achieve a more formal understanding of the Monte Carlo method. Reuven Y. Rubinstein, DSc, was Professor Emeritus in the Faculty of Industrial Engineering and Management at Technion-Israel Institute of Technology. He served as a consultant at numerous large-scale organizations, such as IBM, Motorola, and NEC. The author of over 100 articles and six books, Dr. Rubinstein was also the inventor of the popular score-function method in simulation analysis and generic cross-entropy methods for combinatorial optimization and counting. Dirk P. Kroese, PhD, is a Professor of Mathematics and Statistics in the School of Mathematics and Physics of The University of Queensland, Australia. He has published over 100 articles and four books in a wide range of areas in applied probability and statistics, including Monte Carlo methods, cross-entropy, randomized algorithms, tele-traffic c theory, reliability, computational statistics, applied probability, and stochastic modeling.
Download or read book Information Sampling and Adaptive Cognition written by Klaus Fiedler and published by Cambridge University Press. This book was released on 2006 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes that environmental information samples are biased and cognitive processes are not.
Download or read book Adaptive Survey Design written by Barry Schouten and published by CRC Press. This book was released on 2017-07-28 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive survey designs (ASDs) provide a framework for data-driven tailoring of data collection procedures to different sample members, often for cost and bias reduction. People vary in how likely they are to respond and in how they respond. This variation leads to opportunities to selectively deploy design features in order to control both nonresponse and measurement errors. ASD aims at the optimal matching of design features and the characteristics of respondents given the survey budget. Such a goal is sensible, but ASD requires investment in more advanced technical systems and management infrastructure and asks for the collection of relevant auxiliary data. So what are current best practices in ASD? And is ASD worthwhile when the same auxiliary data are employed in the estimation afterwards? In this book, the authors provide answers to these questions, and much more.
Download or read book Independent Random Sampling Methods written by Luca Martino and published by Springer. This book was released on 2018-03-31 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically addresses the design and analysis of efficient techniques for independent random sampling. Both general-purpose approaches, which can be used to generate samples from arbitrary probability distributions, and tailored techniques, designed to efficiently address common real-world practical problems, are introduced and discussed in detail. In turn, the monograph presents fundamental results and methodologies in the field, elaborating and developing them into the latest techniques. The theory and methods are illustrated with a varied collection of examples, which are discussed in detail in the text and supplemented with ready-to-run computer code. The main problem addressed in the book is how to generate independent random samples from an arbitrary probability distribution with the weakest possible constraints or assumptions in a form suitable for practical implementation. The authors review the fundamental results and methods in the field, address the latest methods, and emphasize the links and interplay between ostensibly diverse techniques.
Download or read book Adaptive Sampling Designs written by George A.F. Seber and published by Springer Science & Business Media. This book was released on 2012-10-22 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide an overview of some adaptive techniques used in estimating parameters for finite populations where the sampling at any stage depends on the sampling information obtained to date. The sample adapts to new information as it comes in. These methods are especially used for sparse and clustered populations. Written by two acknowledged experts in the field of adaptive sampling.
Download or read book Sampling Theory and Practice written by Changbao Wu and published by Springer Nature. This book was released on 2020-05-15 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three parts of this book on survey methodology combine an introduction to basic sampling theory, engaging presentation of topics that reflect current research trends, and informed discussion of the problems commonly encountered in survey practice. These related aspects of survey methodology rarely appear together under a single connected roof, making this book a unique combination of materials for teaching, research and practice in survey sampling. Basic knowledge of probability theory and statistical inference is assumed, but no prior exposure to survey sampling is required. The first part focuses on the design-based approach to finite population sampling. It contains a rigorous coverage of basic sampling designs, related estimation theory, model-based prediction approach, and model-assisted estimation methods. The second part stems from original research conducted by the authors as well as important methodological advances in the field during the past three decades. Topics include calibration weighting methods, regression analysis and survey weighted estimating equation (EE) theory, longitudinal surveys and generalized estimating equations (GEE) analysis, variance estimation and resampling techniques, empirical likelihood methods for complex surveys, handling missing data and non-response, and Bayesian inference for survey data. The third part provides guidance and tools on practical aspects of large-scale surveys, such as training and quality control, frame construction, choices of survey designs, strategies for reducing non-response, and weight calculation. These procedures are illustrated through real-world surveys. Several specialized topics are also discussed in detail, including household surveys, telephone and web surveys, natural resource inventory surveys, adaptive and network surveys, dual-frame and multiple frame surveys, and analysis of non-probability survey samples. This book is a self-contained introduction to survey sampling that provides a strong theoretical base with coverage of current research trends and pragmatic guidance and tools for conducting surveys.
Download or read book Encyclopedia of Survey Research Methods written by Paul J. Lavrakas and published by SAGE Publications. This book was released on 2008-09-12 with total page 1073 pages. Available in PDF, EPUB and Kindle. Book excerpt: To the uninformed, surveys appear to be an easy type of research to design and conduct, but when students and professionals delve deeper, they encounter the vast complexities that the range and practice of survey methods present. To complicate matters, technology has rapidly affected the way surveys can be conducted; today, surveys are conducted via cell phone, the Internet, email, interactive voice response, and other technology-based modes. Thus, students, researchers, and professionals need both a comprehensive understanding of these complexities and a revised set of tools to meet the challenges. In conjunction with top survey researchers around the world and with Nielsen Media Research serving as the corporate sponsor, the Encyclopedia of Survey Research Methods presents state-of-the-art information and methodological examples from the field of survey research. Although there are other "how-to" guides and references texts on survey research, none is as comprehensive as this Encyclopedia, and none presents the material in such a focused and approachable manner. With more than 600 entries, this resource uses a Total Survey Error perspective that considers all aspects of possible survey error from a cost-benefit standpoint. Key Features Covers all major facets of survey research methodology, from selecting the sample design and the sampling frame, designing and pretesting the questionnaire, data collection, and data coding, to the thorny issues surrounding diminishing response rates, confidentiality, privacy, informed consent and other ethical issues, data weighting, and data analyses Presents a Reader′s Guide to organize entries around themes or specific topics and easily guide users to areas of interest Offers cross-referenced terms, a brief listing of Further Readings, and stable Web site URLs following most entries The Encyclopedia of Survey Research Methods is specifically written to appeal to beginning, intermediate, and advanced students, practitioners, researchers, consultants, and consumers of survey-based information.
Download or read book Frontiers in Massive Data Analysis written by National Research Council and published by National Academies Press. This book was released on 2013-09-03 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining of massive data sets is transforming the way we think about crisis response, marketing, entertainment, cybersecurity and national intelligence. Collections of documents, images, videos, and networks are being thought of not merely as bit strings to be stored, indexed, and retrieved, but as potential sources of discovery and knowledge, requiring sophisticated analysis techniques that go far beyond classical indexing and keyword counting, aiming to find relational and semantic interpretations of the phenomena underlying the data. Frontiers in Massive Data Analysis examines the frontier of analyzing massive amounts of data, whether in a static database or streaming through a system. Data at that scale-terabytes and petabytes-is increasingly common in science (e.g., particle physics, remote sensing, genomics), Internet commerce, business analytics, national security, communications, and elsewhere. The tools that work to infer knowledge from data at smaller scales do not necessarily work, or work well, at such massive scale. New tools, skills, and approaches are necessary, and this report identifies many of them, plus promising research directions to explore. Frontiers in Massive Data Analysis discusses pitfalls in trying to infer knowledge from massive data, and it characterizes seven major classes of computation that are common in the analysis of massive data. Overall, this report illustrates the cross-disciplinary knowledge-from computer science, statistics, machine learning, and application disciplines-that must be brought to bear to make useful inferences from massive data.
Download or read book Graph Sampling written by Li-Chun Zhang and published by CRC Press. This book was released on 2021-12-27 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many technological, socio-economic, environmental, biomedical phenomena exhibit an underlying graph structure. Valued graph allows one to incorporate the connections or links among the population units in addition. The links may provide effectively access to the part of population that is the primary target, which is the case for many unconventional sampling methods, such as indirect, network, line-intercept or adaptive cluster sampling. Or, one may be interested in the structure of the connections, in terms of the corresponding graph properties or parameters, such as when various breadth- or depth-first non-exhaustive search algorithms are applied to obtain compressed views of large often dynamic graphs. Graph sampling provides a statistical approach to study real graphs from either of these perspectives. It is based on exploring the variation over all possible sample graphs (or subgraphs) which can be taken from the given population graph, by means of the relevant known sampling probabilities. The resulting design-based inference is valid whatever the unknown properties of the given real graphs. One-of-a-kind treatise of multidisciplinary topics relevant to statistics, mathematics and data science. Probabilistic treatment of breadth-first and depth-first non-exhaustive search algorithms in graphs. Presenting cutting-edge theory and methods based on latest research. Pathfinding for future research on sampling from real graphs. Graph Sampling can primarily be used as a resource for researchers working with sampling or graph problems, and as the basis of an advanced course for post-graduate students in statistics, mathematics and data science.
Download or read book Adaptive Design Theory and Implementation Using SAS and R written by Mark Chang and published by CRC Press. This book was released on 2014-12-01 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get Up to Speed on Many Types of Adaptive DesignsSince the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the
Download or read book Applied Adaptive Statistical Methods written by Thomas W. O'Gorman and published by SIAM. This book was released on 2004-01-01 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces many of the practical adaptive statistical methods and provides a comprehensive approach to tests of significance and confidence intervals.
Download or read book Research Methods for Postgraduates written by Tony Greenfield and published by John Wiley & Sons. This book was released on 2016-08-25 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: An indispensable reference for postgraduates, providing up to date guidance in all subject areas Methods for Postgraduates brings together guidance for postgraduate students on how to organise, plan and do research from an interdisciplinary perspective. In this new edition, the already wide-ranging coverage is enhanced by the addition of new chapters on social media, evaluating the research process, Kansei engineering and medical research reporting. The extensive updates also provide the latest guidance on issues relevant to postgraduates in all subject areas, from writing a proposal and securing research funds, to data analysis and the presentation of research, through to intellectual property protection and career opportunities. This thoroughly revised new edition provides: Clear and concise advice from distinguished international researchers on how to plan, organise and conduct research. New chapters explore social media in research, evaluate the research process, Kansei engineering and discuss the reporting of medical research. Check lists and diagrams throughout. Praise for the second edition: “... the most useful book any new postgraduate could ever buy.” (New Scientist) “The book certainly merits its acceptance as essential reading for postgraduates and will be valuable to anyone associated in any way with research or with presentation of technical or scientific information of any kind.”(Robotica) Like its predecessors, the third edition of Research Methods for Postgraduates is accessible and comprehensive, and is a must-read for any postgraduate student.
Download or read book Data Gathering Analysis and Protection of Privacy Through Randomized Response Techniques Qualitative and Quantitative Human Traits written by and published by Elsevier. This book was released on 2016-04-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Gathering, Analysis and Protection of Privacy through Randomized Response Techniques: Qualitative and Quantitative Human Traits tackles how to gather and analyze data relating to stigmatizing human traits. S.L. Warner invented RRT and published it in JASA, 1965. In the 50 years since, the subject has grown tremendously, with continued growth. This book comprehensively consolidates the literature to commemorate the inception of RR. - Brings together all relevant aspects of randomized response and indirect questioning - Tackles how to gather and analyze data relating to stigmatizing human traits - Gives an encyclopedic coverage of the topic - Covers recent developments and extrapolates to future trends