EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multilevel Approaches to Nonconforming Finite Element Discretizations of Linear Second Order Elliptic Boundary Value Problems

Download or read book Multilevel Approaches to Nonconforming Finite Element Discretizations of Linear Second Order Elliptic Boundary Value Problems written by Barbara Wohlmuth and published by . This book was released on 1993 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "We consider adaptive multilevel techniques for nonconforming finite element discretizations of second order elliptic boundary value problems. In particular, we will focus on two basic ingredients of an efficient adaptive algorithm. The first one is the iterative solution of the arising linear system by preconditioned conjugate gradient methods and the second one is an a posteriori error estimator for the global discretization error. Both element-oriented and edge-oriented estimators will be investigated. Their local contributions will serve as an indicator within the refinement process. Finally, some numerical results will be presented. They illustrate the performance of the preconditioners as well as the refinement process."

Book The Finite Element Method for Boundary Value Problems

Download or read book The Finite Element Method for Boundary Value Problems written by Karan S. Surana and published by CRC Press. This book was released on 2016-11-17 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.

Book Discretization Methods and Iterative Solvers Based on Domain Decomposition

Download or read book Discretization Methods and Iterative Solvers Based on Domain Decomposition written by Barbara I. Wohlmuth and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: Domain decomposition methods provide powerful and flexible tools for the numerical approximation of partial differential equations arising in the modeling of many interesting applications in science and engineering. This book deals with discretization techniques on non-matching triangulations and iterative solvers with particular emphasis on mortar finite elements, Schwarz methods and multigrid techniques. New results on non-standard situations as mortar methods based on dual basis functions and vector field discretizations are analyzed and illustrated by numerical results. The role of trace theorems, harmonic extensions, dual norms and weak interface conditions is emphasized. Although the original idea was used successfully more than a hundred years ago, these methods are relatively new for the numerical approximation. The possibilites of high performance computations and the interest in large- scale problems have led to an increased research activity.

Book Adaptive Finite Elements in the Discretization of Parabolic Problems

Download or read book Adaptive Finite Elements in the Discretization of Parabolic Problems written by Christian A. Möller and published by Logos Verlag Berlin GmbH. This book was released on 2011 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptivity is a crucial tool in state-of-the-art scientific computing. However, its theoretical foundations are only understood partially and are subject of current research. This self-contained work provides theoretical basics on partial differential equations and finite element discretizations before focusing on adaptive finite element methods for time dependent problems. In this context, aspects of temporal adaptivity and error control are considered in particular. Based on the gained insights, a specific adaptive algorithm is designed and analyzed thoroughly. Most importantly, it is proven that the presented adaptive method terminates within any demanded error tolerance. Moreover, the developed algorithm is analyzed from a numerical point of view and its performance is compared to well-known standard methods. Finally, it is applied to the real-life problem of concrete carbonation, where two different discretizations are compared.

Book A Simple Introduction to the Mixed Finite Element Method

Download or read book A Simple Introduction to the Mixed Finite Element Method written by Gabriel N. Gatica and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to provide a simple and accessible introduction to the mixed finite element method as a fundamental tool to numerically solve a wide class of boundary value problems arising in physics and engineering sciences. The book is based on material that was taught in corresponding undergraduate and graduate courses at the Universidad de Concepcion, Concepcion, Chile, during the last 7 years. As compared with several other classical books in the subject, the main features of the present one have to do, on one hand, with an attempt of presenting and explaining most of the details in the proofs and in the different applications. In particular several results and aspects of the corresponding analysis that are usually available only in papers or proceedings are included here.

Book Adaptive Multilevel Iterative Techniques for Nonconforming Finite Element Discretizations

Download or read book Adaptive Multilevel Iterative Techniques for Nonconforming Finite Element Discretizations written by Ronald H. W. Hoppe and published by . This book was released on 1995 with total page 38 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains

Download or read book Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains written by Hengguang Li and published by Springer Nature. This book was released on 2022-09-01 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a class of graded finite element methods to solve singular elliptic boundary value problems in two- and three-dimensional domains. It provides an approachable and self-contained presentation of the topic, including both the mathematical theory and numerical tools necessary to address the major challenges imposed by the singular solution. Moreover, by focusing upon second-order equations with constant coefficients, it manages to derive explicit results that are accessible to the broader computation community. Although written with mathematics graduate students and researchers in mind, this book is also relevant to applied and computational mathematicians, scientists, and engineers in numerical methods who may encounter singular problems.

Book Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Nature. This book was released on 2021-11-19 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.

Book BEM based Finite Element Approaches on Polytopal Meshes

Download or read book BEM based Finite Element Approaches on Polytopal Meshes written by Steffen Weißer and published by Springer. This book was released on 2019-07-18 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to one of the first methods developed for the numerical treatment of boundary value problems on polygonal and polyhedral meshes, which it subsequently analyzes and applies in various scenarios. The BEM-based finite element approaches employs implicitly defined trial functions, which are treated locally by means of boundary integral equations. A detailed construction of high-order approximation spaces is discussed and applied to uniform, adaptive and anisotropic polytopal meshes. The main benefits of these general discretizations are the flexible handling they offer for meshes, and their natural incorporation of hanging nodes. This can especially be seen in adaptive finite element strategies and when anisotropic meshes are used. Moreover, this approach allows for problem-adapted approximation spaces as presented for convection-dominated diffusion equations. All theoretical results and considerations discussed in the book are verified and illustrated by several numerical examples and experiments. Given its scope, the book will be of interest to mathematicians in the field of boundary value problems, engineers with a (mathematical) background in finite element methods, and advanced graduate students.

Book Adaptive Finite Element Methods for Mixed Control state Constrained Optimal Control Problems for Elliptic Boundary Value Problems

Download or read book Adaptive Finite Element Methods for Mixed Control state Constrained Optimal Control Problems for Elliptic Boundary Value Problems written by Ronald H. W. Hoppe and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Treatment of Coupled Systems

Download or read book Numerical Treatment of Coupled Systems written by Wolfgang Hackbusch and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: The coupling considered in this volume may be of physical or numerical nature. Examples of the first kind are the solid-fluid interactions, microelectronic systems, and the coupled modelling in groundwater flow. Examples of the latter kind are the domain or subspace decomposition, the local defect correction method, and the very important FEM-BEM coupling.

Book Finite Element Methods and Their Applications

Download or read book Finite Element Methods and Their Applications written by Zhangxin Chen and published by Springer Science & Business Media. This book was released on 2005-10-14 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduce every concept in the simplest setting and to maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Contains unique recent developments of various finite elements such as nonconforming, mixed, discontinuous, characteristic, and adaptive finite elements, along with their applications. Describes unique recent applications of finite element methods to important fields such as multiphase flows in porous media and semiconductor modelling. Treats the three major types of partial differential equations, i.e., elliptic, parabolic, and hyperbolic equations.