EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Adaptive Control with Recurrent High order Neural Networks

Download or read book Adaptive Control with Recurrent High order Neural Networks written by George A. Rovithakis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.

Book Artificial Higher Order Neural Networks for Modeling and Simulation

Download or read book Artificial Higher Order Neural Networks for Modeling and Simulation written by Zhang, Ming and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces Higher Order Neural Networks (HONNs) to computer scientists and computer engineers as an open box neural networks tool when compared to traditional artificial neural networks"--Provided by publisher.

Book Applied Artificial Higher Order Neural Networks for Control and Recognition

Download or read book Applied Artificial Higher Order Neural Networks for Control and Recognition written by Zhang, Ming and published by IGI Global. This book was released on 2016-05-05 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, Higher Order Neural Networks (HONNs) have been widely adopted by researchers for applications in control signal generating, pattern recognition, nonlinear recognition, classification, and predition of control and recognition scenarios. Due to the fact that HONNs have been proven to be faster, more accurate, and easier to explain than traditional neural networks, their applications are limitless. Applied Artificial Higher Order Neural Networks for Control and Recognition explores the ways in which higher order neural networks are being integrated specifically for intelligent technology applications. Emphasizing emerging research, practice, and real-world implementation, this timely reference publication is an essential reference source for researchers, IT professionals, and graduate-level computer science and engineering students.

Book Artificial Higher Order Neural Networks for Computer Science and Engineering  Trends for Emerging Applications

Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.

Book System Identification and Adaptive Control

Download or read book System Identification and Adaptive Control written by Yiannis Boutalis and published by Springer Science & Business. This book was released on 2014-04-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

Book Applications of Neural Adaptive Control Technology

Download or read book Applications of Neural Adaptive Control Technology written by Jens Kalkkuhl and published by World Scientific. This book was released on 1997 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the results of the second workshop on Neural Adaptive Control Technology, NACT II, held on September 9-10, 1996, in Berlin. The workshop was organised in connection with a three-year European-Union-funded Basic Research Project in the ESPRIT framework, called NACT, a collaboration between Daimler-Benz (Germany) and the University of Glasgow (Scotland).The NACT project, which began on 1 April 1994, is a study of the fundamental properties of neural-network-based adaptive control systems. Where possible, links with traditional adaptive control systems are exploited. A major aim is to develop a systematic engineering procedure for designing neural controllers for nonlinear dynamic systems. The techniques developed are being evaluated on concrete industrial problems from within the Daimler-Benz group of companies.The aim of the workshop was to bring together selected invited specialists in the fields of adaptive control, nonlinear systems and neural networks. The first workshop (NACT I) took place in Glasgow in May 1995 and was mainly devoted to theoretical issues of neural adaptive control. Besides monitoring further development of theory, the NACT II workshop was focused on industrial applications and software tools. This context dictated the focus of the book and guided the editors in the choice of the papers and their subsequent reshaping into substantive book chapters. Thus, with the project having progressed into its applications stage, emphasis is put on the transfer of theory of neural adaptive engineering into industrial practice. The contributors are therefore both renowned academics and practitioners from major industrial users of neurocontrol.

Book Discrete Time High Order Neural Control

Download or read book Discrete Time High Order Neural Control written by Edgar N. Sanchez and published by Springer Science & Business Media. This book was released on 2008-04-29 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Book Discrete Time High Order Neural Control

Download or read book Discrete Time High Order Neural Control written by Edgar N. Sanchez and published by Springer. This book was released on 2008-06-24 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks have become a well-established methodology as exempli?ed by their applications to identi?cation and control of general nonlinear and complex systems; the use of high order neural networks for modeling and learning has recently increased. Usingneuralnetworks,controlalgorithmscanbedevelopedtoberobustto uncertainties and modeling errors. The most used NN structures are Feedf- ward networks and Recurrent networks. The latter type o?ers a better suited tool to model and control of nonlinear systems. There exist di?erent training algorithms for neural networks, which, h- ever, normally encounter some technical problems such as local minima, slow learning, and high sensitivity to initial conditions, among others. As a viable alternative, new training algorithms, for example, those based on Kalman ?ltering, have been proposed. There already exists publications about trajectory tracking using neural networks; however, most of those works were developed for continuous-time systems. On the other hand, while extensive literature is available for linear discrete-timecontrolsystem,nonlineardiscrete-timecontroldesigntechniques have not been discussed to the same degree. Besides, discrete-time neural networks are better ?tted for real-time implementations.

Book Artificial Higher Order Neural Networks for Economics and Business

Download or read book Artificial Higher Order Neural Networks for Economics and Business written by Zhang, Ming and published by IGI Global. This book was released on 2008-07-31 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is the first book to provide opportunities for millions working in economics, accounting, finance and other business areas education on HONNs, the ease of their usage, and directions on how to obtain more accurate application results. It provides significant, informative advancements in the subject and introduces the HONN group models and adaptive HONNs"--Provided by publisher.

Book Artificial Neural Networks for Engineering Applications

Download or read book Artificial Neural Networks for Engineering Applications written by Alma Y Alanis and published by Academic Press. This book was released on 2019-02-13 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.

Book Bio inspired Algorithms for Engineering

Download or read book Bio inspired Algorithms for Engineering written by Nancy Arana-Daniel and published by Butterworth-Heinemann. This book was released on 2018-02-03 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bio-inspired Algorithms for Engineering builds a bridge between the proposed bio-inspired algorithms developed in the past few decades and their applications in real-life problems, not only in an academic context, but also in the real world. The book proposes novel algorithms to solve real-life, complex problems, combining well-known bio-inspired algorithms with new concepts, including both rigorous analyses and unique applications. It covers both theoretical and practical methodologies, allowing readers to learn more about the implementation of bio-inspired algorithms. This book is a useful resource for both academic and industrial engineers working on artificial intelligence, robotics, machine learning, vision, classification, pattern recognition, identification and control. - Presents real-time implementation and simulation results for all the proposed schemes - Offers a comparative analysis and rigorous analysis of the convergence of proposed algorithms - Provides a guide for implementing each application at the end of each chapter - Includes illustrations, tables and figures that facilitate the reader's comprehension of the proposed schemes and applications

Book Control and Systems Engineering

Download or read book Control and Systems Engineering written by Aly El-Osery and published by Springer. This book was released on 2015-03-19 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tribute to 40 years of contributions by Professor Mo Jamshidi who is a well known and respected scholar, researcher, and educator. Mo Jamshidi has spent his professional career formalizing and extending the field of large-scale complex systems (LSS) engineering resulting in educating numerous graduates specifically, ethnic minorities. He has made significant contributions in modeling, optimization, CAD, control and applications of large-scale systems leading to his current global role in formalizing system of systems engineering (SoSE), as a new field. His books on complex LSS and SoSE have filled a vacuum in cyber-physical systems literature for the 21st Century. His contributions to ethnic minority engineering education commenced with his work at the University of New Mexico (UNM, Tier-I Hispanic Serving Institution) in 1980 through a NASA JPL grant. Followed by several more major federal grants, he formalized a model for educating minorities, called VI-P Pyramid where K-12 students(bottom of pyramid) to doctoral (top of pyramid) students form a seamless group working on one project. Upper level students mentor lower ones on a sequential basis. Since 1980, he has graduated over 114 minority students consisting of 62 Hispanics, 34 African Americans., 15 Native Americans, and 3 Pacific Islanders. This book contains contributed chapters from colleagues, and former and current students of Professor Jamshidi. Areas of focus are: control systems, energy and system of systems, robotics and soft computing.

Book Computational Intelligence

Download or read book Computational Intelligence written by Kurosh Madani and published by Springer. This book was released on 2012-12-22 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book includes a set of selected extended papers from the third International Joint Conference on Computational Intelligence (IJCCI 2011), held in Paris, France, from 24 to 26 October 2011. The conference was composed of three co-located conferences: The International Conference on Fuzzy Computation (ICFC), the International Conference on Evolutionary Computation (ICEC), and the International Conference on Neural Computation (ICNC). Recent progresses in scientific developments and applications in these three areas are reported in this book. IJCCI received 283 submissions, from 59 countries, in all continents. This book includes the revised and extended versions of a strict selection of the best papers presented at the conference.

Book Deep Learning and Neural Networks  Concepts  Methodologies  Tools  and Applications

Download or read book Deep Learning and Neural Networks Concepts Methodologies Tools and Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2019-10-11 with total page 1707 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the growing use of web applications and communication devices, the use of data has increased throughout various industries. It is necessary to develop new techniques for managing data in order to ensure adequate usage. Deep learning, a subset of artificial intelligence and machine learning, has been recognized in various real-world applications such as computer vision, image processing, and pattern recognition. The deep learning approach has opened new opportunities that can make such real-life applications and tasks easier and more efficient. Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications is a vital reference source that trends in data analytics and potential technologies that will facilitate insight in various domains of science, industry, business, and consumer applications. It also explores the latest concepts, algorithms, and techniques of deep learning and data mining and analysis. Highlighting a range of topics such as natural language processing, predictive analytics, and deep neural networks, this multi-volume book is ideally designed for computer engineers, software developers, IT professionals, academicians, researchers, and upper-level students seeking current research on the latest trends in the field of deep learning.

Book Network and Communication Technology Innovations for Web and IT Advancement

Download or read book Network and Communication Technology Innovations for Web and IT Advancement written by Alkhatib, Ghazi I. and published by IGI Global. This book was released on 2012-10-31 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the steady stream of new web based information technologies being introduced to organizations, the need for network and communication technologies to provide an easy integration of knowledge and information sharing is essential. Network and Communication Technology Innovations for Web and IT Advancement presents studies on trends, developments, and methods on information technology advancements through network and communication technology. This collection brings together integrated approaches for communication technology and usage for web and IT advancements.

Book Decentralized Neural Control  Application to Robotics

Download or read book Decentralized Neural Control Application to Robotics written by Ramon Garcia-Hernandez and published by Springer. This book was released on 2017-02-05 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a decentralized approach for the identification and control of robotics systems. It also presents recent research in decentralized neural control and includes applications to robotics. Decentralized control is free from difficulties due to complexity in design, debugging, data gathering and storage requirements, making it preferable for interconnected systems. Furthermore, as opposed to the centralized approach, it can be implemented with parallel processors. This approach deals with four decentralized control schemes, which are able to identify the robot dynamics. The training of each neural network is performed on-line using an extended Kalman filter (EKF). The first indirect decentralized control scheme applies the discrete-time block control approach, to formulate a nonlinear sliding manifold. The second direct decentralized neural control scheme is based on the backstepping technique, approximated by a high order neural network. The third control scheme applies a decentralized neural inverse optimal control for stabilization. The fourth decentralized neural inverse optimal control is designed for trajectory tracking. This comprehensive work on decentralized control of robot manipulators and mobile robots is intended for professors, students and professionals wanting to understand and apply advanced knowledge in their field of work.

Book Neural Networks Modeling and Control

Download or read book Neural Networks Modeling and Control written by Jorge D. Rios and published by Academic Press. This book was released on 2020-01-15 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks Modelling and Control: Applications for Unknown Nonlinear Delayed Systems in Discrete Time focuses on modeling and control of discrete-time unknown nonlinear delayed systems under uncertainties based on Artificial Neural Networks. First, a Recurrent High Order Neural Network (RHONN) is used to identify discrete-time unknown nonlinear delayed systems under uncertainties, then a RHONN is used to design neural observers for the same class of systems. Therefore, both neural models are used to synthesize controllers for trajectory tracking based on two methodologies: sliding mode control and Inverse Optimal Neural Control. As well as considering the different neural control models and complications that are associated with them, this book also analyzes potential applications, prototypes and future trends. - Provide in-depth analysis of neural control models and methodologies - Presents a comprehensive review of common problems in real-life neural network systems - Includes an analysis of potential applications, prototypes and future trends