EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Models of the Visual System

    Book Details:
  • Author : George K. Hung
  • Publisher : Springer Science & Business Media
  • Release : 2013-11-11
  • ISBN : 1475758650
  • Pages : 777 pages

Download or read book Models of the Visual System written by George K. Hung and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: Some of the best vision scientists in the world in their respective fields have contributed to chapters in this book. They have expertise in a wide variety of fields, including bioengineering, basic and clinical visual science, medicine, neurophysiology, optometry, and psychology. Their combined efforts have resulted in a high quality book that covers modeling and quantitative analysis of optical, neurosensory, oculomotor, perceptual and clinical systems. It includes only those techniques and models that have such fundamentally strong physiological, control system, and perceptual bases that they will serve as foundations for models and analysis techniques in the future. The book is aimed first towards seniors and beginning graduate students in biomedical engineering, neurophysiology, optometry, and psychology, who will gain a broad understanding of quantitative analysis of the visual system. In addition, it has sufficient depth in each area to be useful as an updated reference and tutorial for graduate and post-doctoral students, as well as general vision scientists.

Book Efficient Processing of Deep Neural Networks

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

Book Deep Learning

    Book Details:
  • Author : Ian Goodfellow
  • Publisher : MIT Press
  • Release : 2016-11-10
  • ISBN : 0262337371
  • Pages : 801 pages

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Book Explainable AI  Interpreting  Explaining and Visualizing Deep Learning

Download or read book Explainable AI Interpreting Explaining and Visualizing Deep Learning written by Wojciech Samek and published by Springer Nature. This book was released on 2019-09-10 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Book Artificial Neural Networks as Models of Neural Information Processing

Download or read book Artificial Neural Networks as Models of Neural Information Processing written by Marcel van Gerven and published by Frontiers Media SA. This book was released on 2018-02-01 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern neural networks gave rise to major breakthroughs in several research areas. In neuroscience, we are witnessing a reappraisal of neural network theory and its relevance for understanding information processing in biological systems. The research presented in this book provides various perspectives on the use of artificial neural networks as models of neural information processing. We consider the biological plausibility of neural networks, performance improvements, spiking neural networks and the use of neural networks for understanding brain function.

Book Proceedings of 3rd International Conference on Computer Vision and Image Processing

Download or read book Proceedings of 3rd International Conference on Computer Vision and Image Processing written by Bidyut B. Chaudhuri and published by Springer Nature. This book was released on 2019-09-19 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of carefully selected works presented at the Third International Conference on Computer Vision & Image Processing (CVIP 2018). The conference was organized by the Department of Computer Science and Engineering of PDPM Indian Institute of Information Technology, Design & Manufacturing, Jabalpur, India during September 29 - October 01, 2018. All the papers have been rigorously reviewed by the experts from the domain. This 2 volume proceedings include technical contributions in the areas of Image/Video Processing and Analysis; Image/Video Formation and Display; Image/Video Filtering, Restoration, Enhancement and Super-resolution; Image/Video Coding and Transmission; Image/Video Storage, Retrieval and Authentication; Image/Video Quality; Transform-based and Multi-resolution Image/Video Analysis; Biological and Perceptual Models for Image/Video Processing; Machine Learning in Image/Video Analysis; Probability and uncertainty handling for Image/Video Processing; and Motion and Tracking.

Book Intelligent Scene Modeling and Human Computer Interaction

Download or read book Intelligent Scene Modeling and Human Computer Interaction written by Nadia Magnenat Thalmann and published by Springer Nature. This book was released on 2021-06-08 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited book is one of the first to describe how Autonomous Virtual Humans and Social Robots can interact with real people and be aware of the surrounding world using machine learning and AI. It includes: · Many algorithms related to the awareness of the surrounding world such as the recognition of objects, the interpretation of various sources of data provided by cameras, microphones, and wearable sensors · Deep Learning Methods to provide solutions to Visual Attention, Quality Perception, and Visual Material Recognition · How Face Recognition and Speech Synthesis will replace the traditional mouse and keyboard interfaces · Semantic modeling and rendering and shows how these domains play an important role in Virtual and Augmented Reality Applications. Intelligent Scene Modeling and Human-Computer Interaction explains how to understand the composition and build very complex scenes and emphasizes the semantic methods needed to have an intelligent interaction with them. It offers readers a unique opportunity to comprehend the rapid changes and continuous development in the fields of Intelligent Scene Modeling.

Book Computer Vision     ECCV 2018

Download or read book Computer Vision ECCV 2018 written by Vittorio Ferrari and published by Springer. This book was released on 2018-10-06 with total page 899 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.

Book Computer Vision     ECCV 2022

Download or read book Computer Vision ECCV 2022 written by Shai Avidan and published by Springer Nature. This book was released on 2022-11-01 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Book Analysis of Visual Behavior

Download or read book Analysis of Visual Behavior written by David Ingle and published by MIT Press (MA). This book was released on 1982 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Analysis of Visual Behavior" encompasses both theoretical and experimental research. It deals with the visual mechanisms of diverse vertebrate species from salamanders and toads to primates and humans and presents a stimulating interaction of the disciplines of anatomy, physiology, and behavioral science. Throughout, visual mechanisms are investigated from the point of view of the brain functioning at the organismic level, as opposed to the now more prevalent focus on the molecular and cellular levels. This approach allows researchers to deal with the patterns of visually guided behavior of animals in real-life situations.The twenty-six contributions in the book are divided among three sections: "Indentification and Localization Processes in Nonmammalian Vertebrates," introduced by David J. Ingle; "Visual Guidance of Motor Patterns: The Role of Visual Cortex and the Superior Colliculus," introduced by Melvyn A. Goodale; and "Recognition and Transfer Processes," introduced by Richard J. W. Mansfield.The editors are all university researchers in psychology: David J. Ingle at Brandeis, Melvyn A. Goodale at the University of Western Ontario, and Richard J. W. Mansfield at Harvard.

Book Computer Vision     ECCV 2016 Workshops

Download or read book Computer Vision ECCV 2016 Workshops written by Gang Hua and published by Springer. This book was released on 2016-11-03 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three-volume set LNCS 9913, LNCS 9914, and LNCS 9915 comprises the refereed proceedings of the Workshops that took place in conjunction with the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. The three-volume set LNCS 9913, LNCS 9914, and LNCS 9915 comprises the refereed proceedings of the Workshops that took place in conjunction with the 14th European Conference on Computer Vision, ECCV 2016, held in Amsterdam, The Netherlands, in October 2016. 27 workshops from 44 workshops proposals were selected for inclusion in the proceedings. These address the following themes: Datasets and Performance Analysis in Early Vision; Visual Analysis of Sketches; Biological and Artificial Vision; Brave New Ideas for Motion Representations; Joint ImageNet and MS COCO Visual Recognition Challenge; Geometry Meets Deep Learning; Action and Anticipation for Visual Learning; Computer Vision for Road Scene Understanding and Autonomous Driving; Challenge on Automatic Personality Analysis; BioImage Computing; Benchmarking Multi-Target Tracking: MOTChallenge; Assistive Computer Vision and Robotics; Transferring and Adapting Source Knowledge in Computer Vision; Recovering 6D Object Pose; Robust Reading; 3D Face Alignment in the Wild and Challenge; Egocentric Perception, Interaction and Computing; Local Features: State of the Art, Open Problems and Performance Evaluation; Crowd Understanding; Video Segmentation; The Visual Object Tracking Challenge Workshop; Web-scale Vision and Social Media; Computer Vision for Audio-visual Media; Computer VISion for ART Analysis; Virtual/Augmented Reality for Visual Artificial Intelligence; Joint Workshop on Storytelling with Images and Videos and Large Scale Movie Description and Understanding Challenge.

Book Computer Vision     ECCV 2020

Download or read book Computer Vision ECCV 2020 written by Andrea Vedaldi and published by Springer Nature. This book was released on 2020-10-28 with total page 844 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Book Pattern Recognition and Computer Vision

Download or read book Pattern Recognition and Computer Vision written by Zhouchen Lin and published by Springer Nature. This book was released on with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theoretical Neuroscience

Download or read book Theoretical Neuroscience written by Peter Dayan and published by MIT Press. This book was released on 2005-08-12 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.

Book Computer Vision     ECCV 2024

    Book Details:
  • Author : Aleš Leonardis
  • Publisher : Springer Nature
  • Release :
  • ISBN : 3031732294
  • Pages : 572 pages

Download or read book Computer Vision ECCV 2024 written by Aleš Leonardis and published by Springer Nature. This book was released on with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Domain Adaptation in Computer Vision with Deep Learning

Download or read book Domain Adaptation in Computer Vision with Deep Learning written by Hemanth Venkateswara and published by Springer Nature. This book was released on 2020-08-18 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a survey of deep learning approaches to domain adaptation in computer vision. It gives the reader an overview of the state-of-the-art research in deep learning based domain adaptation. This book also discusses the various approaches to deep learning based domain adaptation in recent years. It outlines the importance of domain adaptation for the advancement of computer vision, consolidates the research in the area and provides the reader with promising directions for future research in domain adaptation. Divided into four parts, the first part of this book begins with an introduction to domain adaptation, which outlines the problem statement, the role of domain adaptation and the motivation for research in this area. It includes a chapter outlining pre-deep learning era domain adaptation techniques. The second part of this book highlights feature alignment based approaches to domain adaptation. The third part of this book outlines image alignment procedures for domain adaptation. The final section of this book presents novel directions for research in domain adaptation. This book targets researchers working in artificial intelligence, machine learning, deep learning and computer vision. Industry professionals and entrepreneurs seeking to adopt deep learning into their applications will also be interested in this book.

Book Human Perception of Visual Information

Download or read book Human Perception of Visual Information written by Bogdan Ionescu and published by Springer Nature. This book was released on 2022-01-01 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed important advancements in our understanding of the psychological underpinnings of subjective properties of visual information, such as aesthetics, memorability, or induced emotions. Concurrently, computational models of objective visual properties such as semantic labelling and geometric relationships have made significant breakthroughs using the latest achievements in machine learning and large-scale data collection. There has also been limited but important work exploiting these breakthroughs to improve computational modelling of subjective visual properties. The time is ripe to explore how advances in both of these fields of study can be mutually enriching and lead to further progress. This book combines perspectives from psychology and machine learning to showcase a new, unified understanding of how images and videos influence high-level visual perception - particularly interestingness, affective values and emotions, aesthetic values, memorability, novelty, complexity, visual composition and stylistic attributes, and creativity. These human-based metrics are interesting for a very broad range of current applications, ranging from content retrieval and search, storytelling, to targeted advertising, education and learning, and content filtering. Work already exists in the literature that studies the psychological aspects of these notions or investigates potential correlations between two or more of these human concepts. Attempts at building computational models capable of predicting such notions can also be found, using state-of-the-art machine learning techniques. Nevertheless their performance proves that there is still room for improvement, as the tasks are by nature highly challenging and multifaceted, requiring thought on both the psychological implications of the human concepts, as well as their translation to machines.