EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Adaptation of Soil Fungi to Warming and Consequences for Decomposition and the Carbon Cycle

Download or read book Adaptation of Soil Fungi to Warming and Consequences for Decomposition and the Carbon Cycle written by Adriana L. Romero-Olivares and published by . This book was released on 2017 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Studying soil carbon (C) losses and carbon dioxide (CO 2) feedbacks to the atmosphere under global climate change allows us to quantify and understand how our ecosystems are responding to warming. To accurately project the fate of the terrestrial C, we need to incorporate processes that are pivotal in shaping microbial communities that are responsible of processing the C in the soil. One of these processes is the evolutionary adaptation to warming which has been difficult to study because it may only be noticeable on the long term. The goal of my dissertation was to examine soil microbes, their response and adaptation to warming, and consequences to the C cycle. In Chapter 1, I synthesized data from 25 field warming experiments to assess the effect of microbial responses---relevant to the C cycle---to warming over time. I found that the effect of soil respiration decreases as warming progresses and explored the potential microbial-related causes of this decrease. In my second chapter, I experimentally adapted the model fungus Neurospora discreta to warming and analyzed physiological traits important for the C cycle before and after adaptation. I discovered that when N. discreta adapts to warming it allocates more resources to increase its fitness by producing more spores at the expense of biomass. I found that adaptation to warming is accompanied by increases in CO2 respiration potentially due to higher production of energetically expensive spores. In this chapter, I discussed the potential consequences for the terrestrial C if the soil microbial community adapts in a similar manner as N. discreta . Finally, in my third chapter, I quantified decomposition of specific C fractions in litter in a long-term field warming experiment. I found that the proportional losses of recalcitrant vs non-recalcitrant C was higher in warmed plots compared to control plots. Similarly, the ratio of microbial extracellular enzyme activities responsible for breaking down recalcitrant C was higher under warming compared to enzymes that break down non-recalcitrant C. Collectively, in my dissertation research I integrated the process of evolutionary adaptation of microbes to warming, thus providing an overview of the potential long-term effects of warming to decomposition and the C cycle.

Book From Spores to Spreading

Download or read book From Spores to Spreading written by Barrett Williams and published by Barrett Williams. This book was released on 2024-08-27 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: ## From Spores to Spreading How Fungi Adapt and Thrive in a Changing World Dive into the mysterious and fascinating world of fungi with *From Spores to Spreading*, an enthralling exploration of how these ancient organisms are adapting to our rapidly changing climate. **Chapter Highlights** ### Chapter 1 Introduction to Speculative Fungal Evolution Begin your journey with a broad overview of fungi and the unprecedented challenges posed by climate change. Discover the role of speculative biology in imagining the future of fungal life. ### Chapter 2 Fungal Life Cycles in a Changing Climate Explore how fungi are altering their reproductive strategies and growth patterns to survive in a warming world. ### Chapter 3 Genetic Mutations and Adaptations Uncover the types of genetic mutations that enable fungi to thrive under environmental pressures and adapt to new ecological niches. ### Chapter 4 New Ecological Niches Learn how fungi are colonizing extreme environments and forming new symbiotic relationships with plants and animals. ### Chapter 5 Mycelial Networks and Climate Interactions Dive into the complex communication and nutrient cycling within mycelial networks, and their role in carbon sequestration. ### Chapter 6 Fungi and Soil Health Understand the crucial role fungi play in soil decomposition, structure, fertility, and the impact on microbial communities. ### Chapter 7 Pathogenic Fungi in a Warmer World Investigate the implications of increased fungal virulence and the impacts on human, animal, and plant health. ### Chapter 8 Fungi in Aquatic Ecosystems Delve into the adaptations that allow fungi to thrive in freshwater and marine environments. ### Chapter 9 Chemical Warfare Fungal Toxins and Antibiotics Examine the evolution, medicinal potential, and ecological impacts of fungal toxins and antibiotics. ### Chapter 10 Fungi and Climate Feedback Loops Discover how fungi contribute to greenhouse gas emissions and absorption, and their interaction with weather patterns. ### Chapter 11 Bioremediation and Fungi Explore groundbreaking innovations in fungal bioremediation and case studies of contaminated environments. ### Chapter 12 Conservation and Management Learn about protecting fungal biodiversity, relevant policies, and restoration ecology. ### Chapter 13 Fungal Biotechnology and Sustainable Futures Discover the diverse applications of fungal biotechnology in agriculture, industry, and renewable energy. ### Chapter 14 Fungal Interactions with Urbanization Understand the role of fungi in urban ecosystems and green infrastructure, including their impact on human dwellings. ### Chapter 15 Predicting Fungal Futures Wrap up with speculative scenarios for future ecosystems and the interdisciplinary research driving our understanding of fungal adaptation. *From Spores to Spreading* is an indispensable guide for anyone interested in the dynamic and ever-evolving world of fungi. Grab your copy today and embark on a scientific adventure that charts the incredible resilience and innovation of these remarkable organisms.

Book Climate Change and Soil Interactions

Download or read book Climate Change and Soil Interactions written by Majeti Narasimha Var Prasad and published by Elsevier. This book was released on 2020-03-06 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate Change and Soil Interactions examines soil system interactions and conservation strategies regarding the effects of climate change. It presents cutting-edge research in soil carbonization, soil biodiversity, and vegetation. As a resource for strategies in maintaining various interactions for eco-sustainability, topical chapters address microbial response and soil health in relation to climate change, as well as soil improvement practices. Understanding soil systems, including their various physical, chemical, and biological interactions, is imperative for regaining the vitality of soil system under changing climatic conditions. This book will address the impact of changing climatic conditions on various beneficial interactions operational in soil systems and recommend suitable strategies for maintaining such interactions. Climate Change and Soil Interactions enables agricultural, ecological, and environmental researchers to obtain up-to-date, state-of-the-art, and authoritative information regarding the impact of changing climatic conditions on various soil interactions and presents information vital to understanding the growing fields of biodiversity, sustainability, and climate change. Addresses several sustainable development goals proposed by the UN as part of the 2030 agenda for sustainable development Presents a wide variety of relevant information in a unique style corroborated with factual cases, colour images, and case studies from across the globe Recommends suitable strategies for maintaining soil system interactions under changing climatic conditions

Book Climate Change and the Microbiome

Download or read book Climate Change and the Microbiome written by D. K. Choudhary and published by Springer Nature. This book was released on 2021-10-13 with total page 737 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the impact of climate change on the soil microbiome and its subsequent effects on plant health, soil-plant dynamics, and the ecosphere. It also discusses emerging ideas to counteract these effects, e.g., through agricultural applications of functional microbes, to ensure a sustainable ecosystem. Climate change is altering the soil microbiome distributions and thus the interactions in microbiome and plant‐soil microorganism. Improvement of our understanding of microbe-microbe and plant-microbe interaction under changing climatic conditions is essential, because the overall impact of these interactions under varying adverse environmental conditions is lacking. This book has been designed to understand the impact of climate change, i.e., mainly salt and drought stress, on the soil microbiome and its impact on plant, yield, and the ecosphere. The book is organized into four parts: The first part reviews the impact of climate change on the diversity and richness of the soil microbiome. The second part addresses effects of climate change on plant health. The third part discusses effects on soil-plant dynamics and functionality, e.g., soil productivity. The final part deals with the effects of climate change on ecosystem functioning and also discusses potential solutions. The book will appeal to students and researchers working in the area of soil science, agriculture, molecular biology, plant physiology, and biotechnology.

Book Ecosystem Consequences of Soil Warming

Download or read book Ecosystem Consequences of Soil Warming written by Jacqueline E. Mohan and published by Academic Press. This book was released on 2019-04-12 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ecosystem Consequences of Soil Warming: Microbes, Vegetation, Fauna and Soil Biogeochemistry focuses on biotic and biogeochemical responses to warmer soils including plant and microbial evolution. It covers various field settings, such as arctic tundra; alpine meadows; temperate, tropical and subalpine forests; drylands; and grassland ecosystems. Information integrates multiple natural science disciplines, providing a holistic, integrative approach that will help readers understand and forecast future planetwide responses to soil warming. Students and educators will find this book informative for understanding biotic and biogeochemical responses to changing climatic conditions. Scientists from a wide range of disciplines, including soil scientists, ecologists, geneticists, as well as molecular, evolutionary and conservation biologists, will find this book a valuable resource in understanding and planning for warmer climate conditions. Emphasizes biological components of soils, plants and microbes that provide linkages to physics and chemistry Brings together chapters written by global scientific experts with interests in communication and education Includes coverage of polar, alpine, tropical, temperate and dryland ecosystems

Book Microbiome Under Changing Climate

Download or read book Microbiome Under Changing Climate written by Ajay Kumar and published by Woodhead Publishing. This book was released on 2022-01-21 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microbiome Under Changing Climate: Implications and Solutions presents the latest biotechnological interventions for the judicious use of microbes to ensure optimal agricultural yield. Summarizing aspects of vulnerability, adaptation and amelioration of climate impact, this book provides an important resource for understanding microbes, plants and soil in pursuit of sustainable agriculture and improved food security. It emphasizes the interaction between climate and soil microbes and their potential role in promoting advanced sustainable agricultural solutions, focusing on current research designed to use beneficial microbes such as plant growth promoting microorganisms, fungi, endophytic microbes, and more. Changes in climatic conditions influence all factors of the agricultural ecosystem, including adversely impacting yield both in terms of quantity and nutritional quality. In order to develop resilience against climatic changes, it is increasingly important to understand the effect on the native micro-flora, including the distribution of methanogens and methanotrophs, nutrient content and microbial biomass, among others. Demonstrates the impact of climate change on secondary metabolites of plants and potential responses Incorporates insights on microflora of inhabitant soil Explores mitigation processes and their modulation by sustainable methods Highlights the role of microbial technologies in agricultural sustainability

Book The Effect of Roots and Ectomycorrhizal Fungi on Carbon Cycling in Forest Soils

Download or read book The Effect of Roots and Ectomycorrhizal Fungi on Carbon Cycling in Forest Soils written by Naomi R. Voke and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Though the input of labile substrates into the rhizosphere by roots is known to promote decomposition of both soil organic matter (SOM) and surface litter, the presence of ectomycorrhizal (ECM) fungi living in symbiosis with plant roots has been shown to coincide with decreased litter decomposition rates in some systems. In a series of field experiments, techniques including forest girdling and soil trenching were used to exclude roots and ECM fungi in order to investigate the mechanisms controlling litter decomposition in forest soils. Soil trenching was carried out in combination with litter bag incubations, and measurements of soil CO2 flux in a 20 year-old Pinus contorta stand. The use of mesh in-growth collars allowed the influence of ECM fungal hyphae on litter mass loss, and their contribution to soil CO2 flux, to be established separately to that of roots. A specialised irrigation system allowed moisture effects caused by root/ECM hyphal water uptake to be investigated. Neither the presence of roots, nor ECM fungi had any influence on litter decomposition, and soil temperature was the only factor found to correlate with litter mass loss. The exclusion of roots and ECM hyphae led to increased utilisation of a simple substrate, 13C-labelled glucose. Results of incubations of four substrates, varying in structural complexity and nitrogen (N) content, suggested that the rapid utilisation of simple substrates by r-strategist microorganisms might be suppressed in the presence of ECM fungi. Though N content appeared to have a positive influence on substrate decomposition, the results were not significant. In contrast, when forest girdling was used in a nearby Tsuga heterophylla stand to exclude plant-assimilate C supply to the soil, a significant reduction in the rate of litter mass loss was observed. The results presented in this thesis indicate a potentially large role of ECM fungi in controlling decomposition in forest soils, and the mechanisms underlying their influence require further investigation.

Book Microbial Communities of Polar and Alpine Soils

Download or read book Microbial Communities of Polar and Alpine Soils written by Laura Zucconi and published by Frontiers Media SA. This book was released on 2021-11-10 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Soil Enzymology

    Book Details:
  • Author : Girish Shukla
  • Publisher : Springer Science & Business Media
  • Release : 2010-10-17
  • ISBN : 3642142257
  • Pages : 392 pages

Download or read book Soil Enzymology written by Girish Shukla and published by Springer Science & Business Media. This book was released on 2010-10-17 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil enzymes are one of the vital key mediators involved in nutrient recycling and the decomposition of organic matter and thereby in maintaining soil quality and fertility. This Soil Biology volume covers the various facets of soil enzymes, such as their functions, biochemical and microbiological properties and the factors affecting their activities. Enzymes in the rhizosphere, in forest soils, and in volcanic ash-derived soils are described. Soil enzymes covered include phosphohydrolases, lignocellulose-degrading enzymes, phenol oxidases, fungal oxidoreductases, keratinases, pectinases, xylanases, lipases and pectinases. Several chapters treat the soil enzymatic activities in the bioremediation of soils contaminated with pesticides and pollutants such as oil, chlorinated compounds, synthetic dyes and aromatic hydrocarbons. The role of soil enzymes as bioindicators is a further important topic addressed.

Book Heterotrophic Soil Respiration in Warming Experiments

Download or read book Heterotrophic Soil Respiration in Warming Experiments written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The central objective of the proposed work was to develop a genomic approach (nucleic acid-based) that elucidates the mechanistic basis for the observed impacts of experimental soil warming on forest soil respiration. The need to understand the mechanistic basis arises from the importance of such information for developing effective adaptation strategies for dealing with projected climate change. Specifically, robust predictions of future climate will permit the tailoring of the most effective adaptation efforts. And one of the greatest uncertainties in current global climate models is whether there will be a net loss of carbon from soils to the atmosphere as climate warms. Given that soils contain approximately 2.5 times as much carbon as the atmosphere, a net loss could lead to runaway climate warming. Indeed, most ecosystem models predict that climate warming will stimulate microbial decomposition of soil carbon, producing such a positive feedback to rising global temperatures. Yet the IPCC highlights the uncertainty regarding this projected feedback. The uncertainty arises because although warming-experiments document an initial increase in the loss of carbon from soils, the increase in respiration is short-lived, declining to control levels in a few years. This attenuation could result from changes in microbial physiology with temperature. We explored possible microbial responses to warming using experiments and modeling. Our work advances our understanding of how soil microbial communities and their activities are structured, generating insight into how soil carbon might respond to warming. We show the importance of resource partitioning in structuring microbial communities. Specifically, we quantified the relative abundance of fungal taxa that proliferated following the addition of organic substrates to soil. We added glycine, sucrose, cellulose, lignin, or tannin-protein to soils in conjunction with 3-bromo-deoxyuridine (BrdU), a nucleotide analog. Active microbes absorb BrdU from the soil solution; if they multiply in response to substrate additions, they incorporate the BrdU into their DNA. After allowing soils to incubate, we extracted BrdU-labeled DNA and sequenced the ITS regions of fungal rDNA. Fungal taxa that proliferated following substrate addition were likely using the substrate as a resource for growth. We found that the structure of active fungal communities varied significantly among substrates. The active fungal community under glycine was significantly different from those under other conditions, while the active communities under sucrose and cellulose were marginally different from each other and the control. These results indicate that the overall community structure of active fungi was altered by the addition of glycine, sucrose, and cellulose and implies that some fungal taxa respond to changes in resource availability. The community composition of active fungi is also altered by experimental warming. We found that glycine-users tended to increase under warming, while lignin-, tannin/protein-, and sucrose-users declined. The latter group of substrates requires extracellular enzymes for use, but glycine does not. It is possible that warming selects for fungal species that target, in particular, labile substrates. Linking these changes in microbial communities and resource partitioning to soil carbon dynamics, we find that substrate mineralization rates are, in general, significantly lower in soils exposed to long-term warming. This suggests that microbial use of organic substrates is impaired by warming. Yet effects are dependent on substrate identity. There are fundamental differences in the metabolic capabilities of the communities in the control and warmed soils. These differences might relate to the changes in microbial community composition, which appeared to be associated with groups specialized on different resources. We also find that functional responses indicate temperature acclimation of the microbial community. There are distinct seasonal patterns and to long-term soil warming, with higher-temperature optima for soils exposed to warmer temperatures. To relate these changes within the microbial community to potential positive feedbacks between climate warming and soil respiration, we develop a microbial-enzyme model to simulate the responses of soil carbon to warming. We find that declines in microbial biomass and degradative enzymes can explain the observed attenuation of soil-carbon emissions in response to warming. Specifically, reduced carbon-use efficiency limits the biomass of microbial decomposers and mitigates loss of soil carbon. However, microbial adaptation or a change in microbial communities could lead to an upward adjustment of the efficiency of carbon use, counteracting the decline in microbial biomass and accelerating soil-carbon loss. We conclude that the soil-carbon response to climate warming depends on the efficiency of soil microbes in using carbon.

Book Biogeochemical Cycles

    Book Details:
  • Author : Katerina Dontsova
  • Publisher : John Wiley & Sons
  • Release : 2020-04-14
  • ISBN : 1119413303
  • Pages : 336 pages

Download or read book Biogeochemical Cycles written by Katerina Dontsova and published by John Wiley & Sons. This book was released on 2020-04-14 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements move through Earth's critical zone along interconnected pathways that are strongly influenced by fluctuations in water and energy. The biogeochemical cycling of elements is inextricably linked to changes in climate and ecological disturbances, both natural and man-made. Biogeochemical Cycles: Ecological Drivers and Environmental Impact examines the influences and effects of biogeochemical elemental cycles in different ecosystems in the critical zone. Volume highlights include: Impact of global change on the biogeochemical functioning of diverse ecosystems Biological drivers of soil, rock, and mineral weathering Natural elemental sources for improving sustainability of ecosystems Links between natural ecosystems and managed agricultural systems Non-carbon elemental cycles affected by climate change Subsystems particularly vulnerable to global change The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Book Review: http://www.elementsmagazine.org/archives/e16_6/e16_6_dep_bookreview.pdf

Book Mass Spectrometry of Soils

Download or read book Mass Spectrometry of Soils written by Thomas Boutton and published by CRC Press. This book was released on 1996-05-30 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work provides detailed coverage of the applications of proven spectometric techniques in soil science. It presents analytical approaches important in the study of pool sizes and the dynamics of macro- and micronutrients, the structure and function of soil organic matter, and the co-evolution of soils, plant communities and climate. Interdisciplinary perspectives from soil science, ecology, geology, chemistry, biogeochemistry, agronomy and physics, are offered.

Book Modern Soil Microbiology  Second Edition

Download or read book Modern Soil Microbiology Second Edition written by Jan Dirk van Elsas and published by CRC Press. This book was released on 2006-12-21 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the ten years since the publication of Modern Soil Microbiology, the study of soil microbiology has significantly changed, both in the understanding of the diversity and function of soil microbial communities and in research methods. Ideal for students in a variety of disciplines, this second edition provides a cutting-edge examination of a fascinating discipline that encompasses ecology, physiology, genetics, molecular biology, and biotechnology, and makes use of biochemical and biophysical approaches. The chapters cover topics ranging from the fundamental to the applied and describe the use of advanced methods that have provided a great thrust to the discipline of soil microbiology. Using the latest molecular analyses, they integrate principles of soil microbiology with novel insights into the physiology of soil microorganisms. The authors discuss the soil and rhizosphere as habitats for microorganisms, then go on to describe the different microbial groups, their adaptive responses, and their respective processes in interactive and functional terms. The book highlights a range of applied aspects of soil microbiology, including the nature of disease-suppressive soils, the use of biological control agents, biopesticides and bioremediation agents, and the need for correct statistics and experimentation in the analyses of the data obtained from soil systems.

Book Manual for Soil Analysis   Monitoring and Assessing Soil Bioremediation

Download or read book Manual for Soil Analysis Monitoring and Assessing Soil Bioremediation written by Rosa Margesin and published by Springer Science & Business Media. This book was released on 2005-12-15 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents detailed descriptions of methods for evaluating, monitoring and assessing bioremediation of soil contaminated with organic pollutants or heavy metals. Traditional soil investigation techniques, including chemical, physical and microbiological methods, are complemented by the most suitable modern methods, including bioreporter technology, immunological, ecotoxicological and molecular assays. Step-by-step procedures, lists of required equipment and reagents and notes on evaluation and quality control allow immediate application

Book Forest and Rangeland Soils of the United States Under Changing Conditions

Download or read book Forest and Rangeland Soils of the United States Under Changing Conditions written by Richard V. Pouyat and published by Springer Nature. This book was released on 2020-09-02 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book synthesizes leading-edge science and management information about forest and rangeland soils of the United States. It offers ways to better understand changing conditions and their impacts on soils, and explores directions that positively affect the future of forest and rangeland soil health. This book outlines soil processes and identifies the research needed to manage forest and rangeland soils in the United States. Chapters give an overview of the state of forest and rangeland soils research in the Nation, including multi-decadal programs (chapter 1), then summarizes various human-caused and natural impacts and their effects on soil carbon, hydrology, biogeochemistry, and biological diversity (chapters 2–5). Other chapters look at the effects of changing conditions on forest soils in wetland and urban settings (chapters 6–7). Impacts include: climate change, severe wildfires, invasive species, pests and diseases, pollution, and land use change. Chapter 8 considers approaches to maintaining or regaining forest and rangeland soil health in the face of these varied impacts. Mapping, monitoring, and data sharing are discussed in chapter 9 as ways to leverage scientific and human resources to address soil health at scales from the landscape to the individual parcel (monitoring networks, data sharing Web sites, and educational soils-centered programs are tabulated in appendix B). Chapter 10 highlights opportunities for deepening our understanding of soils and for sustaining long-term ecosystem health and appendix C summarizes research needs. Nine regional summaries (appendix A) offer a more detailed look at forest and rangeland soils in the United States and its Affiliates.

Book Litter Decomposition  a Guide to Carbon and Nutrient Turnover

Download or read book Litter Decomposition a Guide to Carbon and Nutrient Turnover written by and published by Academic Press. This book was released on 2005-11-22 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Litter Decomposition describes one of the most important processes in the biosphere - the decay of organic matter. It focuses on the decomposition process of foliar litter in the terrestrial systems of boreal and temperate forests due to the greater amount of data from those biomes. The availability of several long-term studies from these forest types allows a more in-depth approach to the later stages of decomposition and humus formation. Differences between the decay of woody matter and foliar litter is discussed in detail and a different pattern for decomposition is introduced. While teachers and students in more general subjects will find the most basic information on decomposition processes in this book, scientists and graduate students working on decomposition processes will be entirely satisfied with the more detailed information and the overview of the latest publications on the topic as well as the methodological chapter where practical information on methods useful in decomposition studies can be found. Abundant data sets will serve as an excellent aid in teaching process and will be also of interest to researchers specializing in this field as no thorough database exists at the moment. Provides over 60 tables and 90 figures Offers a conceptual 3-step model describing the different steps of the decomposition process, demonstrating changes in the organic-chemical structure and nutrient contents Includes a synthesis of the current state of knowledge on foliar litter decomposition in natural systems Integrates more traditional knowledge on organic matter decomposition with current problems of environmental pollution, global change, etc. Details contemporary knowledge on organic matter decomposition