EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Active Control of Combustion Instabilities in GE s Gas Turbines

Download or read book Active Control of Combustion Instabilities in GE s Gas Turbines written by Benjamin Zinn and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions  Part I  Physics Based and Experimentally Identified Models of Combustion Instability

Download or read book Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions Part I Physics Based and Experimentally Identified Models of Combustion Instability written by C. A. Jacobson and published by . This book was released on 2000 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper details the development of a thermoacoustic model and associated dynamic analysis. The model describes the results obtained in a gas fueled experimental combustion program carried out at UTRC. The contents of the paper are (a) the development of a thermoacoustic model composed of acoustic and heat release components, (b) the dynamic analysis of the resulting non-linear model using harmonic balance methods to compute linear stability boundaries and the amplitudes of oscillations and (c) the calibration of the model to experimental data.

Book Combustion Instabilities in Gas Turbine Engines

Download or read book Combustion Instabilities in Gas Turbine Engines written by Timothy C. Lieuwen and published by AIAA (American Institute of Aeronautics & Astronautics). This book was released on 2005 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.

Book Active Combustion Control for Aircraft Gas Turbine Engines

Download or read book Active Combustion Control for Aircraft Gas Turbine Engines written by and published by . This book was released on 2000 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions  Part II  Adaptive Control Algorithm Development  Demonstration and Performance Limitations

Download or read book Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions Part II Adaptive Control Algorithm Development Demonstration and Performance Limitations written by Andrzej Banaszuk and published by . This book was released on 2001 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present results of experiment with two distinct extremum-seeking adaptive algorithms for control of combustion instability suitable for reduction of acoustic pressure oscillations in gas turbine over large range of operating conditions. The algorithms consists of a frequency tracking Extended Kalman Filter to determine the in-phase component, the quadrature component, and the magnitude of the acoustic mode of interest, and a phase shifting controller with the controller phase tuned using an extremum-seeking algorithms. The algorithms are also applicable for control of oscillations of systems whose oscillation frequency and optimal control phase shift depends on operating conditions, and which are driven by strong broad-band disturbance. The algorithms have been tested in combustion experiments involving full-scale engine hardware and during simulated fast engine transients.

Book Combination of Active Instability Control and Passive Measures to Prevent Combustion Instabilities in a 260MW Heavy Duty Gas Turbine

Download or read book Combination of Active Instability Control and Passive Measures to Prevent Combustion Instabilities in a 260MW Heavy Duty Gas Turbine written by J. Hermann and published by . This book was released on 2001 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reducing the output of NOx pollutants and enhancing efficiency are the two major aims pursued by developers of modern gas turbines. In order to achieve them. lean premix combustion is preferred turbine inlet temperatures and thus power densities within the combustion chamber system being continuously increased to augment efficiency. Due to this fact. the tendency of modern combustion systems to develop so-called self- excited combustion oscillations keeps increasing. After briefly discussing the oscillation problems encountered with the annular combustion chamber of a Siemens type V94.3A stationary gas turbine. particular attention will be paid to suppressing these oscillations by passive and active means. The passive measures presented. i.e. extending the burner nozzle were intended to detune the combustion system by prolonging the time lag required by the combustible mixture exiting the burner outlet to reach the combustion zone Moreover. to suppress periodic vortex shedding. another possible cause for combustion instabilities. those extensions were inclined in a certain angle with respect to the main flow direction. To prevent the in-phase lock of all 24 burners promoting the excitation of any azimuthal mode the burners were selected to have different time lags and were arranged asymmetrically within the annular combustion chamber. In addition to these passive measures, a multi-channel Active Instability Control (AIC) system was implemented to achieve further damping. With the AIC system presented. any homer oscillations occurring are measured by p-ressure sensors their signals are processed by means of a multi-channel controller and then transmitted to actuators designed to damp down combustion oscillations. The points of intervention selected to do so were the gas supplies of the pilot flames.

Book Causes of Combustion Instabilities with Passive and Active Methods of Control for Practical Application to Gas Turbine Engines

Download or read book Causes of Combustion Instabilities with Passive and Active Methods of Control for Practical Application to Gas Turbine Engines written by Michael D. Cornwell and published by . This book was released on 2011 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward stagnation point, limiting dissipation of heat and reactive species significantly improving stability. Combustion hardware is developed and tested to demonstrate the stability principles developed as part of this research. In order to more completely understand combustion instability a very unique method of combustion was researched where there are no discrete points of combustion initiation such as the forward stagnation point typical in many combustion systems including swirl and jet wake stabilized combustion. This class of combustion which has empirical evidence of great stability and efficient combustion with low CO, NOx and UHC emissions is described as high oxidization temperature distributed combustion. This mechanism of combustion is shown to be stable largely because there are no stagnations points susceptible to fluid mechanic perturbations. The final topic of research is active combustion control by fuel modulation. This may be the only practical method of controlling most instabilities with a single technique. As there are many papers reporting active combustion control algorithms this research focused on the complexities of the physics of fuel modulation at frequencies up to 1000 Hz with proportionally controlled flow amplitude. This research into the physics of high speed fluid movement, oscillation mechanical mechanisms and electromagnetics are demonstrated by development and testing of a High Speed Latching Oscillator Valve.

Book Application of Active Combustion Instability Control to a Heavy Duty Gas Turbine

Download or read book Application of Active Combustion Instability Control to a Heavy Duty Gas Turbine written by J. R. Seume and published by . This book was released on 1997 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the ASME ASIA '97 Congress & Exhibition, Singapore, Sep 30-Oct 2, 1997.

Book Sub scale demonstration of the active feedback control of gas turbine combustion instabilities  ASME 98 GT 258

Download or read book Sub scale demonstration of the active feedback control of gas turbine combustion instabilities ASME 98 GT 258 written by Stanley S. Sattinger and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine & Aeroengine Congress & Exhibition, Stockholm, Sweden, June 2 - June 5, 1998.

Book Approaches for Clean Combustion in Gas Turbines

Download or read book Approaches for Clean Combustion in Gas Turbines written by Medhat A. Nemitallah and published by Springer Nature. This book was released on 2020-03-24 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the development of novel combustion approaches and burner designs for clean power generation in gas turbines. It shows the reader how to control the release of pollutants to the environment in an effort to reduce global warming. After an introduction to global warming issues and clean power production for gas turbine applications, subsequent chapters address premixed combustion, burner designs for clean power generation, gas turbine performance, and insights on gas turbine operability. Given its scope, the book can be used as a textbook for graduate-level courses on clean combustion, or as a reference book to accompany compact courses for mechanical engineers and young researchers around the world.

Book Active Control of Engine Dynamics

Download or read book Active Control of Engine Dynamics written by and published by . This book was released on 2002 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Active control can alleviate design constraints and improve the response to operational requirements in gas turbines. The Course presented the state-of-the-art including experimental, theoretical knowledge and practical information. Topics treated: stability characteristics; active control approaches; robustness and fundamental limits; combustion systems processes; combustor dynamics; compression system dynamics models; diagnostics and control of compression instabilities; sensor and actuator architectures; R & D needs of future prospects. The course has shown that for combustion systems, as well as in actuator and sensor technologies, the active control approach is a viable option even at full scale with potential for aero engines and air breathing missiles.

Book Combustion Instabilities in Gas Turbine

Download or read book Combustion Instabilities in Gas Turbine written by Giulietti Emanuele and published by LAP Lambert Academic Publishing. This book was released on 2015-08-04 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasingly strict regulation for pollutant emissions has recently led engine manufacturers to develop combustors that meet various regulatory requirements. Lean-premixed combustion appears to be the most promising technology for practical systems at the present time. In lean-premixed combustion, the fuel and air are premixed upstream of the combustor to avoid the formation of stoichiometric regions. The combustor is operated with excess air to reduce the flame temperature; consequently, thermal NOx is virtually eliminated. Unsteady flow oscillations, also referred to as combustion instability, have emerged as a common problem, and hindered the development of lean-premixed combustors. These oscillations may reach sufficient amplitudes to interfere with engine operation, and in extreme cases, lead to failure of the system due to excessive structural vibration and heat transfer to the chamber. The book is organized in two parts: an extensive bibliographic review of combustion instabilities and the motivation of this work in part 1; and the study about a new diagnostic methodology for thermoacoustic instability detection and future control in part 2.

Book Unsteady Combustion

Download or read book Unsteady Combustion written by F. Culick and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers prepared for the NATO Advanced Study Institute on "Unsteady Combustion", which was held in Praia da Granja, Portugal, 6-17 September 1993. Approximately 100 delegates from 14 countries attended. The Institute was the most recent in a series beginning with "Instrumentation for Combustion and Flow in Engines", held in Vimeiro, Portugal 1987 and followed by "Combusting Flow Diagnostics" conducted in Montechoro, Portugal in 1990. Together, these three Institutes have covered a wide range of experimental and theoretical topics arising in the research and development of combustion systems with particular emphasis on gas-turbine combustors and internal combustion engines. The emphasis has evolved roughly from instrumentation and experimental techniques to the mixture of experiment, theory and computational work covered in the present volume. As the title of this book implies, the chief aim of this Institute was to provide a broad sampling of problems arising with time-dependent behaviour in combustors. In fact, of course, that intention encompasses practically all possibilities, for "steady" combustion hardly exists if one looks sufficiently closely at the processes in a combustion chamber. The point really is that, apart from the excellent paper by Bahr (Chapter 10) discussing the technology of combustors for aircraft gas turbines, little attention is directed to matters of steady performance. The volume is divided into three parts devoted to the subjects of combustion-induced oscillations; combustion in internal combustion engines; and experimental techniques and modelling.

Book Validation of an Adaptive Combustion Instability Control Method for Gas Turbine Engines

Download or read book Validation of an Adaptive Combustion Instability Control Method for Gas Turbine Engines written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-08-20 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling. Kopasakis, George and DeLaat, John C. and Chang, Clarence T. Glenn Research Center NASA/TM-2004-213198, AIAA Paper 2004-4028, E-14698