EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Metamaterials and Wave Control

Download or read book Metamaterials and Wave Control written by Eric Lheurette and published by John Wiley & Sons. This book was released on 2013-12-04 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. On the one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand, metamaterials also provide new tools for the design of well-known wave functions such as antennas for electromagnetic waves. The goal of this book is to propose an overview of the concept of metamaterials as a perspective on a new practical tool for wave study and engineering. This includes both the electromagnetic spectrum, from microwave to optics, and the field of acoustic waves. Contents 1. Overview of Microwave and Optical Metamaterial Technologies, Didier Lippens. 2. MetaLines: Transmission Line Approach for the Design of Metamaterial Devices, Bruno Sauviac. 3. Metamaterials for Non-Radiative Microwave Functions and Antennas, Divitha Seetharamdoo and Bruno Sauviac. 4. Toward New Prospects for Electromagnetic Compatibility, Divitha Seetharamdoo. 5. Dissipative Loss in Resonant Metamaterials, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis. 6. Transformation Optics and Antennas, André de Lustrac, Shah Nawaz Burokur and Paul-Henri Tichit. 7. Metamaterials for Control of Surface Electromagnetic and Liquid Waves, Sébastien Guenneau, Mohamed Farhat, Muamer Kadic, Stefan Enoch and Romain Quidant. 8. Classical Analog of Electromagnetically Induced Transparency, Philippe Tassin, Thomas Koschny and Costas M. Soukoulis.

Book Acoustic Metamaterials and Wave Control

Download or read book Acoustic Metamaterials and Wave Control written by Gengkai Hu and published by Frontier Research in Computati. This book was released on 2020-11-30 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: As an emerging interdisciplinary field, acoustic metamaterials have generated increasing interests for diverse engineering applications, from noise and vibration alleviation to super-resolution imaging. The book starts with a simple mass-in-mass chain model to illustrate the concept of negative mass due to internal resonance and its impact on wave transmission. The practical transformation theory for controlling acoustic waves is explained. Pentamode acoustic metamaterials and related cloaking design are also included. Finally, the book ends up with the sub-diffraction-limited acoustic imaging based on metamaterials. This comprehensive title gives a broad overview on different aspects of acoustic metamaterials with a balance of theory and experiment. It is not only a collection of the authors' original works to these interesting topics, but also the main achievements in this field. Researchers, academics, professionals and graduate students in the fields of mechanical engineering, condensed matter physics, new materials, applied physics, and general readers of noise and vibration controls, will find this exciting book to be an indispensible reference material.

Book Programmable Elastic Metamaterials for Wave Control and Device Applications

Download or read book Programmable Elastic Metamaterials for Wave Control and Device Applications written by Hui Chen and published by Frontiers Media SA. This book was released on 2023-10-27 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging from electromagnetic waves and fast extending to acoustic and elastic waves, metamaterials that exhibit extraordinary wave control abilities have been gaining soaring attention. Over the past two decades, elastic metamaterials with engineered microstructures have provided a variety of appealing solutions for controlling elastic waves and vibrations. By tailoring their internal microstructures at a subwavelength scale, elastic metamaterials fruitfully distinct themselves from traditional materials or phononic crystals by their striking functions in wave trajectory manipulation, cloaking, nonreciprocal and topological wave control, as well as low-frequency wave/vibration mitigation and absorption.

Book Acoustic Waves in Periodic Structures  Metamaterials  and Porous Media

Download or read book Acoustic Waves in Periodic Structures Metamaterials and Porous Media written by Noé Jiménez and published by Springer Nature. This book was released on 2021-11-03 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book delivers a comprehensive and up-to-date treatment of practical applications of metamaterials, structured media, and conventional porous materials. With increasing levels of urbanization, a growing demand for motorized transport, and inefficient urban planning, environmental noise exposure is rapidly becoming a pressing societal and health concern. Phononic and sonic crystals, acoustic metamaterials, and metasurfaces can revolutionize noise and vibration control and, in many cases, replace traditional porous materials for these applications. In this collection of contributed chapters, a group of international researchers reviews the essentials of acoustic wave propagation in metamaterials and porous absorbers with viscothermal losses, as well as the most recent advances in the design of acoustic metamaterial absorbers. The book features a detailed theoretical introduction describing commonly used modelling techniques such as plane wave expansion, multiple scattering theory, and the transfer matrix method. The following chapters give a detailed consideration of acoustic wave propagation in viscothermal fluids and porous media, and the extension of this theory to non-local models for fluid saturated metamaterials, along with a description of the relevant numerical methods. Finally, the book reviews a range of practical industrial applications, making it especially attractive as a white book targeted at the building, automotive, and aeronautic industries.

Book Fundamentals and Applications of Acoustic Metamaterials

Download or read book Fundamentals and Applications of Acoustic Metamaterials written by Vicente Romero-Garcia and published by John Wiley & Sons. This book was released on 2019-09-11 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last few decades, metamaterials have revolutionized the ways in which waves are controlled, and applied in physics and practical situations. The extraordinary properties of metamaterials, such as their locally resonant structure with deep subwavelength band gaps and their ranges of frequency where propagation is impossible, have opened the way to a host of applications that were previously unavailable. Acoustic metamaterials have been able to replace traditional treatments in several sectors, due to their better performance in targeted and tunable frequency ranges with strongly reduced dimensions. This is a training book composed of nine chapters written by experts in the field, giving a broad overview of acoustic metamaterials and their uses. The book is divided into three parts, covering the state-of-the-art, the fundamentals and the real-life applications of acoustic metamaterials.

Book Metamaterials and Wave Control

Download or read book Metamaterials and Wave Control written by Eric Lheurette and published by John Wiley & Sons. This book was released on 2013-12-04 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. On the one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand, metamaterials also provide new tools for the design of well-known wave functions such as antennas for electromagnetic waves. The goal of this book is to propose an overview of the concept of metamaterials as a perspective on a new practical tool for wave study and engineering. This includes both the electromagnetic spectrum, from microwave to optics, and the field of acoustic waves. Contents 1. Overview of Microwave and Optical Metamaterial Technologies, Didier Lippens. 2. MetaLines: Transmission Line Approach for the Design of Metamaterial Devices, Bruno Sauviac. 3. Metamaterials for Non-Radiative Microwave Functions and Antennas, Divitha Seetharamdoo and Bruno Sauviac. 4. Toward New Prospects for Electromagnetic Compatibility, Divitha Seetharamdoo. 5. Dissipative Loss in Resonant Metamaterials, Philippe Tassin, Thomas Koschny, and Costas M. Soukoulis. 6. Transformation Optics and Antennas, André de Lustrac, Shah Nawaz Burokur and Paul-Henri Tichit. 7. Metamaterials for Control of Surface Electromagnetic and Liquid Waves, Sébastien Guenneau, Mohamed Farhat, Muamer Kadic, Stefan Enoch and Romain Quidant. 8. Classical Analog of Electromagnetically Induced Transparency, Philippe Tassin, Thomas Koschny and Costas M. Soukoulis.

Book Acoustic Metamaterials and Phononic Crystals

Download or read book Acoustic Metamaterials and Phononic Crystals written by Pierre A. Deymier and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book presents all aspects of acoustic metamaterials and phononic crystals. The emphasis is on acoustic wave propagation phenomena at interfaces such as refraction, especially unusual refractive properties and negative refraction. A thorough discussion of the mechanisms leading to such refractive phenomena includes local resonances in metamaterials and scattering in phononic crystals.

Book An Introduction to Metamaterials and Waves in Composites

Download or read book An Introduction to Metamaterials and Waves in Composites written by Biswajit Banerjee and published by CRC Press. This book was released on 2011-06-07 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring no advanced knowledge of wave propagation, An Introduction to Metamaterials and Waves in Composites focuses on theoretical aspects of metamaterials, periodic composites, and layered composites. The book gives novices a platform from which they can start exploring the subject in more detail. After introducing concepts related to elasticity, acoustics, and electrodynamics in media, the text presents plane wave solutions to the equations that describe elastic, acoustic, and electromagnetic waves. It examines the plane wave expansion of sources as well as scattering from curved interfaces, specifically spheres and cylinders. The author then covers electrodynamic, acoustic, and elastodynamic metamaterials. He also describes examples of transformations, aspects of acoustic cloaking, and applications of pentamode materials to acoustic cloaking. With a focus on periodic composites, the text uses the Bloch-Floquet theorem to find the effective behavior of composites in the quasistatic limit, presents the quasistatic equations of elastodynamic and electromagnetic waves, and investigates Brillouin zones and band gaps in periodic structures. The final chapter discusses wave propagation in smoothly varying layered media, anisotropic density of a periodic layered medium, and quasistatic homogenization of laminates. This book provides a launch pad for research into elastic and acoustic metamaterials. Many of the ideas presented have yet to be realized experimentally—the book encourages readers to explore these ideas and bring them to technological maturity.

Book New Acoustics Based on Metamaterials

Download or read book New Acoustics Based on Metamaterials written by Woon Siong Gan and published by Springer. This book was released on 2017-12-10 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the acoustical metamaterials’ capability to manipulate the direction of sound propagation in solids which in turn control the scattering, diffraction and refraction, the three basic mechanisms of sound propagation in solids. This gives rise to several novel theories and applications and hence the name new acoustics. As an introduction, the book mentions that symmetry of acoustic fields is the theoretical framework of acoustical metamaterials. This is then followed by describing that acoustical metamaterials began with locally resonant sonic materials which ushered in the concept of negative acoustic parameters such as mass density and bulk modulus. This complies with form invariance of the acoustic equation of motion which again exemplifies the symmetry property of acoustic fields.

Book Metamaterials with Extreme Properties for the Control of Acoustic Waves

Download or read book Metamaterials with Extreme Properties for the Control of Acoustic Waves written by Matthieu Malléjac and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zero-index metamaterials, for which at least one of the effective parameters (density or dynamic compressibility for acoustics) vanishes, have received considerable attention in recent years. These materials have the particularity of inducing a considerable increase in the effective wavelength, thus offering numerous application possibilities, including, among others, propagation without phase change, acoustic hiding of diffusers, directivity control, etc. This PhD work focuses particularly on the near-zero effective density regime in acoustic metamaterials made of thin plates in air. Through an in-depth study of a periodic arrangement of thin elastic plates embedded in a waveguide, we have been able to explore analytically, numerically and experimentally some of the above effects. Particular attention is paid to the losses inherent to this type of system and their consequences on the expected behavior. We begin by studying numerically and experimentally observing a phase-change-free propagation through the metamaterial at a frequency in a stopband of the finite system. We then transpose the concept of photonic doping to acoustics. The addition of an impurity, here a well-chosen Helmholtz resonator, to the system allows to transform the regime of zero density into one where density and compressibility are simultaneously near zero. Thus, propagation without phase change is accompanied by a unitary transmission, due to the impedance matching of the system with the surrounding air. Finally, we study the possibility of performing acoustic hiding or masking of an object using the acoustic wavelength stretching offered by the zero density.

Book Controlling Acoustic and Elastic Waves with Metamaterials

Download or read book Controlling Acoustic and Elastic Waves with Metamaterials written by Xiaoshi Su and published by . This book was released on 2017 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this dissertation is to model, simulate and design metamaterials for underwater sound and elastic wave control. Water-based acoustic metamaterials usually suffer from low transmission due to the impedance mismatch with water; elastic metamaterials also suffer from this issue not only because of the impedance mismatch to the host medium, but also due to the multiple wave types existing simultaneously at the interface between the inclusions and the background matrix. This dissertation focuses on the theoretical modeling and computational design of broadband high transmission metamaterial devices. Several related topics are discussed. (1) A semi-analytical method for band diagram computation of three dimensional (3D) lattices is developed in this dissertation. It has significant applications in 3D pentamode metamaterial design. (2) Acoustic transmission through gratings of parallel plates displaying anisotropic inertia is also investigated. It is found that broadband impedance matching and total acoustic transmission can be achieved if the plane wave is incident at the so-called intromission angle ±[theta]i. (3) Elastic wave transmission through aligned parallel plates are studied theoretically by considering the coupling between different types of waves in elastic half-spaces and in the plates. The results are applied in the design and optimization of elastic metamaterials. (4) Elastic waves in fluid-saturated anisotropic double porosity medium of cubic symmetry is also investigated as an extension to Biot's theory of poroelasticity. A third dilatational wave is predicted in a double porosity fluid-saturated gyroid structure and demonstrated using finite element (FEM) simulations. The second part of the dissertation focuses on several novel devices for manipulating acoustic and elastic waves. Metallic metamaterial unit cells of the hexagonal lattice type are employed to mimic the quasi-static acoustic properties of water, and to provide a certain range of index for gradient index (GRIN) metamaterial design. The advantage of such a metamaterial element is that it has in-plane isotropy and only allows one propagating mode within the frequency range of interest. (5) A flat GRIN lens is designed by tuning the unit cells to obey a modified hyperbolic secant index profile, such that a normally incident plane wave transmits through the lens efficiently and focuses at a single point. The side lobe suppression and aberration reduction abilities of the GRIN lens are demonstrated in both simulations and in underwater experiments (carried out by colleagues at the University of Texas at Austin). (6) An elastic shell based metamaterial element, which provides a wider range of index at the quasi-static regime, is adopted in the design of a conformal lens for converting a monopole source to highly directional plane wave beams. The required bulk modulus and density distributions are derived using conformal transformation acoustics mapping from a unit circle to a triangle. The mapping function is adjustable which allows energy radiating preferentially into different directions. Two collimation devices are designed using fluid-saturated shells and demonstrated using full wave FEM simulations. (7) A novel class of elastic metamaterial composed of "effective plates" are introduced to design high transmission devices for elastic waves. Several devices for focusing SV-wave, splitting P- and SV-waves, and asymmetric transmission are designed and demonstrated using full wave FEM simulations.

Book Metamaterial Electromagnetic Wave Absorbers

Download or read book Metamaterial Electromagnetic Wave Absorbers written by Willie J. Padilla and published by Morgan & Claypool Publishers. This book was released on 2022-01-24 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.

Book Dynamic Equivalent Modeling of Acoustic Metamaterials

Download or read book Dynamic Equivalent Modeling of Acoustic Metamaterials written by Nansha Gao and published by Springer Nature. This book was released on 2022-10-17 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book derives physical models from basic principles, studies the effect of equivalent models on the dynamic characteristics of phononic crystals and acoustic metamaterials, and analyzes the physical mechanisms behind vibration and noise reduction. It first summarizes the research status of vibration and noise reduction, and research progress in phononic crystals and acoustic metamaterials. Based on this, one-dimensional periodic beam, two-dimensional thin plate with circular hole, and corresponding gradient structures are introduced, and their dynamic characteristics are discussed in detail. Therefore, different equivalent methods for different models are proposed through theoretical analysis, modal analysis and transmission rate analysis. Finally, a Helmholtz-type acoustic metamaterial, i.e. a multi-layer slotted tube acoustic metamaterial, is studied. Aiming at the low-frequency band gap of this model, a theoretical model for solving the inverse problem of acousto-electric analogue equivalent is proposed, and the effect of structural parameters on the low-frequency band gap is studied using this equivalent model. This book closely revolves around how to conduct equivalent research on artificially fabricated periodic structures. The methods and conclusions presented in this book provide a new theoretical basis for the application of artificial woven periodic structures in the field of low-frequency vibration reduction and noise reduction and are also an innovation in the discipline of vibration and noise control. This book is suitable for undergraduate students, graduate students and teachers in vibration and noise majors in universities, and can also provide references for engineering and technical personnel in related fields.

Book Acoustic Metamaterials

Download or read book Acoustic Metamaterials written by Richard V. Craster and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: About the book: This book is the first comprehensive review on acoustic metamaterials; novel materials which can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. It covers both experimental and theoretical aspects of acoustic and elastic waves propagating in structured composites, with a focus on effective properties associated with negative refraction, lensing and cloaking. Most related books in the field address electromagnetic metamaterials and focus on numerical methods, and little (or no) experimental section. Each chapter will be authored by an acknowledged expert, amongst the topics covered will be experimental results on non-destructive imaging, cloaking by surface water waves, flexural waves in thin plates. Applications in medical ultrasound imaging and modeling of metamaterials will be emphasized too. The book can serve as a reference for researchers who wish to build a solid foundation of wave propagation in this class of novel materials.

Book Waves in Gradient Metamaterials

Download or read book Waves in Gradient Metamaterials written by Aleksandr Borisovich Shvart?s?burg and published by World Scientific. This book was released on 2013 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book opens a new avenue to an engendering field of applied physics, located at the OC crossingOCO of modern photonics, electromagnetics, acoustics and material science. It also highlights the concept of OC non-localityOCO, which proves to be not a special feature of quantum phenomena, but is shown to have an important counterpart in classical physics and its engineering applications too. Furthermore, it visualizes the physical results by means of simple analytical presentations, reduced sometimes to the elementary functions.

Book Acoustic Metamaterials

    Book Details:
  • Author : Sz-Chin Steven Lin
  • Publisher : LAP Lambert Academic Publishing
  • Release : 2012-08
  • ISBN : 9783659186547
  • Pages : 112 pages

Download or read book Acoustic Metamaterials written by Sz-Chin Steven Lin and published by LAP Lambert Academic Publishing. This book was released on 2012-08 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Acoustic metamaterials are of growing interest due to their ability to manipulate the propagation of acoustic waves in an extraordinary manner to benefit various applications, such as communications, biosensing, and medical diagnosis and therapy. Among various construction methods of acoustic metamaterials, artificially engineered elastic periodic structures, known as phononic crystals (PCs), are the strongest candidates since they exhibit complete phononic band gaps and negative refractions due to the periodicity of the structure. In this book, a new class of acoustic metamaterials-gradient-index phononic crystal (GRIN PC)-is introduced to overcome the limitations of regular PCs and further enrich the control over acoustic waves. GRIN PCs with different gradient profiles are designed to guide acoustic waves in extraordinary manners that are not shown in nature or regular PCs. A practical method for tuning the phononic band gaps of a PC is investigated. The concepts presented in this book serve as important foundations for the future development of acoustic devices.

Book Theory and Design of Acoustic Metamaterials

Download or read book Theory and Design of Acoustic Metamaterials written by Perngjin Frank Pai and published by . This book was released on 2015 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the most recent theoretical developments and numerical/experimental validations of new metamaterials and phononic crystals for the broadband absorption of elastic waves and vibrations in structures. These nine chapters explore many aspects of phononic crystals and acoustic/elastic metamaterials, including sound attenuation/absorption, extraordinary transmission, wave broadband mitigation, wave steering, cloaking via the transformation method, optimization of phononic crystals, and active acoustic metamaterials.