EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Modeling and Computation in Python

Download or read book Bayesian Modeling and Computation in Python written by Osvaldo A. Martin and published by CRC Press. This book was released on 2021-12-28 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3, Tensorflow Probability, ArviZ and other libraries focusing on the practice of applied statistics with references to the underlying mathematical theory. The book starts with a refresher of the Bayesian Inference concepts. The second chapter introduces modern methods for Exploratory Analysis of Bayesian Models. With an understanding of these two fundamentals the subsequent chapters talk through various models including linear regressions, splines, time series, Bayesian additive regression trees. The final chapters include Approximate Bayesian Computation, end to end case studies showing how to apply Bayesian modelling in different settings, and a chapter about the internals of probabilistic programming languages. Finally the last chapter serves as a reference for the rest of the book by getting closer into mathematical aspects or by extending the discussion of certain topics. This book is written by contributors of PyMC3, ArviZ, Bambi, and Tensorflow Probability among other libraries.

Book Computational Methods in Systems Biology

Download or read book Computational Methods in Systems Biology written by Olivier Roux and published by Springer. This book was released on 2015-09-01 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 13th International Conference on Computational Methods in Systems Biology, CMSB 2015, held in Nantes, France, in September 2015. The 20 full papers and 2 short papers presented were carefully reviewed and selected from 43 full and 4 short paper submissions. The papers cover a wide range of topics in the analysis of biological systems, networks and data such as model checking, stochastic analysis, hybrid systems, circadian clock, time series data, logic programming, and constraints solving ranging from intercellular to multiscale.

Book Neural and Computational Modeling of Movement Control

Download or read book Neural and Computational Modeling of Movement Control written by Ning Lan and published by Frontiers Media SA. This book was released on 2017-04-17 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the study of sensorimotor systems, an important research goal has been to understand the way neural networks in the spinal cord and brain interact to control voluntary movement. Computational modeling has provided insight into the interaction between centrally generated commands, proprioceptive feedback signals and the biomechanical responses of the moving body. Research in this field is also driven by the need to improve and optimize rehabilitation after nervous system injury and to devise biomimetic methods of control in robotic devices. This research topic is focused on efforts dedicated to identify and model the neuromechanical control of movement. Neural networks in the brain and spinal cord are known to generate patterned activity that mediates coordinated activation of multiple muscles in both rhythmic and discrete movements, e.g. locomotion and reaching. Commands descending from the higher centres in the CNS modulate the activity of spinal networks, which control movement on the basis of sensory feedback of various types, including that from proprioceptive afferents. The computational models will continue to shed light on the central strategies and mechanisms of sensorimotor control and learning. This research topic demonstrated that computational modeling is playing a more and more prominent role in the studies of postural and movement control. With increasing ability to gather data from all levels of the neuromechanical sensorimotor systems, there is a compelling need for novel, creative modeling of new and existing data sets, because the more systematic means to extract knowledge and insights about neural computations of sensorimotor systems from these data is through computational modeling. While models should be based on experimental data and validated with experimental evidence, they should also be flexible to provide a conceptual framework for unifying diverse data sets, to generate new insights of neural mechanisms, to integrate new data sets into the general framework, to validate or refute hypotheses and to suggest new testable hypotheses for future experimental investigation. It is thus expected that neural and computational modeling of the sensorimotor system should create new opportunities for experimentalists and modelers to collaborate in a joint endeavor to advance our understanding of the neural mechanisms for postural and movement control. The editors would like to thank Professor Arthur Prochazka, who helped initially to set up this research topic, and all authors who contributed their articles to this research topic. Our appreciation also goes to the reviewers, who volunteered their time and effort to help achieve the goal of this research topic. We would also like to thank the staff members of editorial office of Frontiers in Computational Neuroscience for their expertise in the process of manuscript handling, publishing, and in bringing this ebook to the readers. The support from the Editor-in-Chief, Dr. Misha Tsodyks and Dr. Si Wu is crucial for this research topic to come to a successful conclusion. We are indebted to Dr. Si Li and Ms. Ting Xu, whose assistant is important for this ebook to become a reality. Finally, this work is supported in part by grants to Dr. Ning Lan from the Ministry of Science and Technology of China (2011CB013304), the Natural Science Foundation of China (No. 81271684, No. 61361160415, No. 81630050), and the Interdisciplinary Research Grant cross Engineering and Medicine by Shanghai Jiao Tong University (YG20148D09). Dr. Vincent Cheung is supported by startup funds from the Faculty of Medicine of The Chinese University of Hong Kong. Guest Associate Editors Ning Lan, Vincent Cheung, and Simon Gandevia

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Non Deterministic  Non Traditional Methods  NDNTM

Download or read book Non Deterministic Non Traditional Methods NDNTM written by and published by . This book was released on 2001 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Sequential Analysis and Optimal Design

Download or read book Sequential Analysis and Optimal Design written by Herman Chernoff and published by SIAM. This book was released on 1972-01-01 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exploration of the interrelated fields of design of experiments and sequential analysis with emphasis on the nature of theoretical statistics and how this relates to the philosophy and practice of statistics.

Book Technical Report

Download or read book Technical Report written by and published by . This book was released on 1995-07 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Design and Analysis of Computer Experiments

Download or read book The Design and Analysis of Computer Experiments written by Thomas J. Santner and published by Springer. This book was released on 2019-01-08 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes methods for designing and analyzing experiments that are conducted using a computer code, a computer experiment, and, when possible, a physical experiment. Computer experiments continue to increase in popularity as surrogates for and adjuncts to physical experiments. Since the publication of the first edition, there have been many methodological advances and software developments to implement these new methodologies. The computer experiments literature has emphasized the construction of algorithms for various data analysis tasks (design construction, prediction, sensitivity analysis, calibration among others), and the development of web-based repositories of designs for immediate application. While it is written at a level that is accessible to readers with Masters-level training in Statistics, the book is written in sufficient detail to be useful for practitioners and researchers. New to this revised and expanded edition: • An expanded presentation of basic material on computer experiments and Gaussian processes with additional simulations and examples • A new comparison of plug-in prediction methodologies for real-valued simulator output • An enlarged discussion of space-filling designs including Latin Hypercube designs (LHDs), near-orthogonal designs, and nonrectangular regions • A chapter length description of process-based designs for optimization, to improve good overall fit, quantile estimation, and Pareto optimization • A new chapter describing graphical and numerical sensitivity analysis tools • Substantial new material on calibration-based prediction and inference for calibration parameters • Lists of software that can be used to fit models discussed in the book to aid practitioners

Book Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging  Methods   Applications

Download or read book Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging Methods Applications written by Xiaoying Tang and published by Frontiers Media SA. This book was released on 2019-08-22 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Anatomy (CA) is an emerging discipline aiming to understand anatomy by utilizing a comprehensive set of mathematical tools. CA focuses on providing precise statistical encodings of anatomy with direct application to a broad range of biological and medical settings. During the past two decades, there has been an ever-increasing pace in the development of neuroimaging techniques, delivering in vivo information on the anatomy and physiological signals of different human organs through a variety of imaging modalities such as MRI, x-ray, CT, and PET. These multi-modality medical images provide valuable data for accurate interpretation and estimation of various biological parameters such as anatomical labels, disease types, cognitive states, functional connectivity between distinct anatomical regions, as well as activation responses to specific stimuli. In the era of big neuroimaging data, Bayes’ theorem provides a powerful tool to deliver statistical conclusions by combining the current information and prior experience. When sufficiently good data is available, Bayes’ theorem can utilize it fully and provide statistical inferences/estimations with the least error rate. Bayes’ theorem arose roughly three hundred years ago and has seen extensive application in many fields of science and technology, including recent neuroimaging, ever since. The last fifteen years have seen a great deal of success in the application of Bayes’ theorem to the field of CA and neuroimaging. That said, given that the power and success of Bayes’ rule largely depends on the validity of its probabilistic inputs, it is still a challenge to perform Bayesian estimation and inference on the typically noisy neuroimaging data of the real world. We assembled contributions focusing on recent developments in CA and neuroimaging through Bayesian estimation and inference, in terms of both methodologies and applications. It is anticipated that the articles in this Research Topic will provide a greater insight into the field of Bayesian imaging analysis.

Book Optimal Design of Experiments

Download or read book Optimal Design of Experiments written by Friedrich Pukelsheim and published by SIAM. This book was released on 2006-04-01 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal Design of Experiments offers a rare blend of linear algebra, convex analysis, and statistics. The optimal design for statistical experiments is first formulated as a concave matrix optimization problem. Using tools from convex analysis, the problem is solved generally for a wide class of optimality criteria such as D-, A-, or E-optimality. The book then offers a complementary approach that calls for the study of the symmetry properties of the design problem, exploiting such notions as matrix majorization and the Kiefer matrix ordering. The results are illustrated with optimal designs for polynomial fit models, Bayes designs, balanced incomplete block designs, exchangeable designs on the cube, rotatable designs on the sphere, and many other examples.

Book Reliable Engineering Computing

Download or read book Reliable Engineering Computing written by and published by Research Publishing Service. This book was released on with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 13th International Symposium on Process Systems Engineering     PSE 2018  July 1 5 2018

Download or read book 13th International Symposium on Process Systems Engineering PSE 2018 July 1 5 2018 written by Mario R. Eden and published by Elsevier. This book was released on 2018-07-19 with total page 2620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Process Systems Engineering brings together the international community of researchers and engineers interested in computing-based methods in process engineering. This conference highlights the contributions of the PSE community towards the sustainability of modern society and is based on the 13th International Symposium on Process Systems Engineering PSE 2018 event held San Diego, CA, July 1-5 2018. The book contains contributions from academia and industry, establishing the core products of PSE, defining the new and changing scope of our results, and future challenges. Plenary and keynote lectures discuss real-world challenges (globalization, energy, environment and health) and contribute to discussions on the widening scope of PSE versus the consolidation of the core topics of PSE. - Highlights how the Process Systems Engineering community contributes to the sustainability of modern society - Establishes the core products of Process Systems Engineering - Defines the future challenges of Process Systems Engineering

Book Monte Carlo and Quasi Monte Carlo Methods

Download or read book Monte Carlo and Quasi Monte Carlo Methods written by Aicke Hinrichs and published by Springer Nature. This book was released on with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Intelligent Decision Making in Quality Management

Download or read book Intelligent Decision Making in Quality Management written by Cengiz Kahraman and published by Springer. This book was released on 2015-10-31 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recently developed intelligent techniques with applications and theory in the area of quality management. The involved applications of intelligence include techniques such as fuzzy sets, neural networks, genetic algorithms, etc. The book consists of classical quality management topics dealing with intelligent techniques for solving the complex quality management problems. The book will serve as an excellent reference for quality managers, researchers, lecturers and postgraduate students in this area. The authors of the chapters are well-known researchers in the area of quality management.

Book Memetic Computation

Download or read book Memetic Computation written by Abhishek Gupta and published by Springer. This book was released on 2018-12-18 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book bridges the widening gap between two crucial constituents of computational intelligence: the rapidly advancing technologies of machine learning in the digital information age, and the relatively slow-moving field of general-purpose search and optimization algorithms. With this in mind, the book serves to offer a data-driven view of optimization, through the framework of memetic computation (MC). The authors provide a summary of the complete timeline of research activities in MC – beginning with the initiation of memes as local search heuristics hybridized with evolutionary algorithms, to their modern interpretation as computationally encoded building blocks of problem-solving knowledge that can be learned from one task and adaptively transmitted to another. In the light of recent research advances, the authors emphasize the further development of MC as a simultaneous problem learning and optimization paradigm with the potential to showcase human-like problem-solving prowess; that is, by equipping optimization engines to acquire increasing levels of intelligence over time through embedded memes learned independently or via interactions. In other words, the adaptive utilization of available knowledge memes makes it possible for optimization engines to tailor custom search behaviors on the fly – thereby paving the way to general-purpose problem-solving ability (or artificial general intelligence). In this regard, the book explores some of the latest concepts from the optimization literature, including, the sequential transfer of knowledge across problems, multitasking, and large-scale (high dimensional) search, systematically discussing associated algorithmic developments that align with the general theme of memetics. The presented ideas are intended to be accessible to a wide audience of scientific researchers, engineers, students, and optimization practitioners who are familiar with the commonly used terminologies of evolutionary computation. A full appreciation of the mathematical formalizations and algorithmic contributions requires an elementary background in probability, statistics, and the concepts of machine learning. A prior knowledge of surrogate-assisted/Bayesian optimization techniques is useful, but not essential.

Book Bayesian Inference and Maximum Entropy Methods in Science and Engineering

Download or read book Bayesian Inference and Maximum Entropy Methods in Science and Engineering written by Marcelo de Souza Lauretto and published by American Institute of Physics. This book was released on 2008-12-04 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: The MaxEnt2008 - 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering - encompassed all aspects of information theory, probability, statistical inference and statistical physics, including research on foundations and theoretical developments, as well as modeling techniques for several specific application areas.

Book Bayesian Methods for Data Analysis  Third Edition

Download or read book Bayesian Methods for Data Analysis Third Edition written by Bradley P. Carlin and published by CRC Press. This book was released on 2008-06-30 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broadening its scope to nonstatisticians, Bayesian Methods for Data Analysis, Third Edition provides an accessible introduction to the foundations and applications of Bayesian analysis. Along with a complete reorganization of the material, this edition concentrates more on hierarchical Bayesian modeling as implemented via Markov chain Monte Carlo (MCMC) methods and related data analytic techniques. New to the Third Edition New data examples, corresponding R and WinBUGS code, and homework problems Explicit descriptions and illustrations of hierarchical modeling—now commonplace in Bayesian data analysis A new chapter on Bayesian design that emphasizes Bayesian clinical trials A completely revised and expanded section on ranking and histogram estimation A new case study on infectious disease modeling and the 1918 flu epidemic A solutions manual for qualifying instructors that contains solutions, computer code, and associated output for every homework problem—available both electronically and in print Ideal for Anyone Performing Statistical Analyses Focusing on applications from biostatistics, epidemiology, and medicine, this text builds on the popularity of its predecessors by making it suitable for even more practitioners and students.