Download or read book Case Studies in Applied Bayesian Data Science written by Kerrie L. Mengersen and published by Springer Nature. This book was released on 2020-05-28 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting a range of substantive applied problems within Bayesian Statistics along with their Bayesian solutions, this book arises from a research program at CIRM in France in the second semester of 2018, which supported Kerrie Mengersen as a visiting Jean-Morlet Chair and Pierre Pudlo as the local Research Professor. The field of Bayesian statistics has exploded over the past thirty years and is now an established field of research in mathematical statistics and computer science, a key component of data science, and an underpinning methodology in many domains of science, business and social science. Moreover, while remaining naturally entwined, the three arms of Bayesian statistics, namely modelling, computation and inference, have grown into independent research fields. While the research arms of Bayesian statistics continue to grow in many directions, they are harnessed when attention turns to solving substantive applied problems. Each such problem set has its own challenges and hence draws from the suite of research a bespoke solution. The book will be useful for both theoretical and applied statisticians, as well as practitioners, to inspect these solutions in the context of the problems, in order to draw further understanding, awareness and inspiration.
Download or read book Markov Chain Monte Carlo written by Dani Gamerman and published by CRC Press. This book was released on 1997-10-01 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Download or read book Monte Carlo Strategies in Scientific Computing written by Jun S. Liu and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.
Download or read book Advanced Markov Chain Monte Carlo Methods written by Faming Liang and published by John Wiley & Sons. This book was released on 2011-07-05 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.
Download or read book Introducing Monte Carlo Methods with R written by Christian Robert and published by Springer Science & Business Media. This book was released on 2010 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
Download or read book Bayesian Statistics 6 written by J. M. Bernardo and published by Oxford University Press. This book was released on 1999-08-12 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.
Download or read book Bayesian Reinforcement Learning written by Mohammad Ghavamzadeh and published by . This book was released on 2015-11-18 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference algorithms. This monograph provides the reader with an in-depth review of the role of Bayesian methods for the reinforcement learning (RL) paradigm. The major incentives for incorporating Bayesian reasoning in RL are that it provides an elegant approach to action-selection (exploration/exploitation) as a function of the uncertainty in learning, and it provides a machinery to incorporate prior knowledge into the algorithms. Bayesian Reinforcement Learning: A Survey first discusses models and methods for Bayesian inference in the simple single-step Bandit model. It then reviews the extensive recent literature on Bayesian methods for model-based RL, where prior information can be expressed on the parameters of the Markov model. It also presents Bayesian methods for model-free RL, where priors are expressed over the value function or policy class. Bayesian Reinforcement Learning: A Survey is a comprehensive reference for students and researchers with an interest in Bayesian RL algorithms and their theoretical and empirical properties.
Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl
Download or read book Reconfigurable Computing Architectures Tools and Applications written by Oliver Choy and published by Springer Science & Business Media. This book was released on 2012-03-02 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 8th International Symposium on Reconfigurable Computing: Architectures, Tools and Applications, ARC 2012, held in Hongkong, China, in March 2012. The 35 revised papers presented, consisting of 25 full papers and 10 poster papers were carefully reviewed and selected from 44 submissions. The topics covered are applied RC design methods and tools, applied RC architectures, applied RC applications and critical issues in applied RC.
Download or read book Kendall s Advanced Theory of Statistic 2B written by Anthony O'Hagan and published by John Wiley & Sons. This book was released on 2010-03-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kendall's Advanced Theory of Statistics and Kendall's Library of Statistics The development of modern statistical theory in the past fifty years is reflected in the history of the late Sir Maurice Kenfall's volumes The Advanced Theory of Statistics. The Advanced Theory began life as a two-volume work, and since its first appearance in 1943, has been an indispensable source for the core theory of classical statistics. With Bayesian Inference, the same high standard has been applied to this important and exciting new body of theory.
Download or read book Handbook of Probabilistic Models written by Pijush Samui and published by Butterworth-Heinemann. This book was released on 2019-10-05 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems
Download or read book Bayesian Filtering and Smoothing written by Simo Särkkä and published by Cambridge University Press. This book was released on 2013-09-05 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified Bayesian treatment of the state-of-the-art filtering, smoothing, and parameter estimation algorithms for non-linear state space models.
Download or read book FEFLOW written by Hans-Jörg G. Diersch and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: FEFLOW is an acronym of Finite Element subsurface FLOW simulation system and solves the governing flow, mass and heat transport equations in porous and fractured media by a multidimensional finite element method for complex geometric and parametric situations including variable fluid density, variable saturation, free surface(s), multispecies reaction kinetics, non-isothermal flow and multidiffusive effects. FEFLOW comprises theoretical work, modeling experiences and simulation practice from a period of about 40 years. In this light, the main objective of the present book is to share this achieved level of modeling with all required details of the physical and numerical background with the reader. The book is intended to put advanced theoretical and numerical methods into the hands of modeling practitioners and scientists. It starts with a more general theory for all relevant flow and transport phenomena on the basis of the continuum approach, systematically develops the basic framework for important classes of problems (e.g., multiphase/multispecies non-isothermal flow and transport phenomena, discrete features, aquifer-averaged equations, geothermal processes), introduces finite-element techniques for solving the basic balance equations, in detail discusses advanced numerical algorithms for the resulting nonlinear and linear problems and completes with a number of benchmarks, applications and exercises to illustrate the different types of problems and ways to tackle them successfully (e.g., flow and seepage problems, unsaturated-saturated flow, advective-diffusion transport, saltwater intrusion, geothermal and thermohaline flow).
Download or read book Finite Mixture Models written by Geoffrey McLachlan and published by John Wiley & Sons. This book was released on 2004-03-22 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Download or read book Ecological Modelling and Engineering of Lakes and Wetlands written by and published by Elsevier. This book was released on 2014-04-04 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ecological modelling has developed rapidly in recent decades, with the focus primarily on the restoration of lakes and wetlands. Ecological Modelling and Engineering in Lakes and Wetlands presents the progress being made in modelling for a wealth of applications. It covers the older biogeochemical models still in use today, structurally dynamic models, 3D models, biophysical models, entire watershed models, and ecotoxicological models, as well as the expansion of modeling to the Arctic and Antarctic climate-zones. The book also addresses modelling the effect of climate change, including the development of ecological models for addressing storm water pond issues, which are increasingly important in urban regions where more concentrated rainfalls are a consequence of climate change. The ecological engineering topics covered in the book also emphasize the advancements being made in applying ecological engineering regimes for better environmental management of lakes and wetlands. - Examines recent progress towards a better understanding of these two important ecosystems - Presents new results and approaches that can be used to develop better models - Discusses how to increase the synergistic effect between ecosystems engineering and modelling
Download or read book Contemporary Bayesian Econometrics and Statistics written by John Geweke and published by John Wiley & Sons. This book was released on 2005-10-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
Download or read book Statistical and Computational Inverse Problems written by Jari Kaipio and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the statistical mechanics approach to computational solution of inverse problems, an innovative area of current research with very promising numerical results. The techniques are applied to a number of real world applications such as limited angle tomography, image deblurring, electical impedance tomography, and biomagnetic inverse problems. Contains detailed examples throughout and includes a chapter on case studies where such methods have been implemented in biomedical engineering.