Download or read book Abstract Parabolic Evolution Equations and their Applications written by Atsushi Yagi and published by Springer Science & Business Media. This book was released on 2009-11-03 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0
Download or read book Abstract Parabolic Evolution Equations and ojasiewicz Simon Inequality I written by Atsushi Yagi and published by Springer. This book was released on 2021-06-01 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical Łojasiewicz gradient inequality (1963) was extended by Simon (1983) to the infinite-dimensional setting, now called the Łojasiewicz–Simon gradient inequality. This book presents a unified method to show asymptotic convergence of solutions to a stationary solution for abstract parabolic evolution equations of the gradient form by utilizing this Łojasiewicz–Simon gradient inequality. In order to apply the abstract results to a wider class of concrete nonlinear parabolic equations, the usual Łojasiewicz–Simon inequality is extended, which is published here for the first time. In the second version, these abstract results are applied to reaction–diffusion equations with discontinuous coefficients, reaction–diffusion systems, and epitaxial growth equations. The results are also applied to the famous chemotaxis model, i.e., the Keller–Segel equations even for higher-dimensional ones.
Download or read book Moving Interfaces and Quasilinear Parabolic Evolution Equations written by Jan Prüss and published by Birkhäuser. This book was released on 2016-07-25 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the authors develop a comprehensive approach for the mathematical analysis of a wide array of problems involving moving interfaces. It includes an in-depth study of abstract quasilinear parabolic evolution equations, elliptic and parabolic boundary value problems, transmission problems, one- and two-phase Stokes problems, and the equations of incompressible viscous one- and two-phase fluid flows. The theory of maximal regularity, an essential element, is also fully developed. The authors present a modern approach based on powerful tools in classical analysis, functional analysis, and vector-valued harmonic analysis. The theory is applied to problems in two-phase fluid dynamics and phase transitions, one-phase generalized Newtonian fluids, nematic liquid crystal flows, Maxwell-Stefan diffusion, and a variety of geometric evolution equations. The book also includes a discussion of the underlying physical and thermodynamic principles governing the equations of fluid flows and phase transitions, and an exposition of the geometry of moving hypersurfaces.
Download or read book Abstract Evolution Equations Periodic Problems and Applications written by D Daners and published by Chapman and Hall/CRC. This book was released on 1992-12-29 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part of the Pitman Research Notes in Mathematics series, this text covers: linear evolution equations of parabolic type; semilinear evolution equations of parabolic type; evolution equations and positivity; semilinear periodic evolution equations; and applications.
Download or read book Abstract Parabolic Evolution Equations and ojasiewicz Simon Inequality I written by Atsushi Yagi and published by Springer Nature. This book was released on 2021-05-31 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical Łojasiewicz gradient inequality (1963) was extended by Simon (1983) to the infinite-dimensional setting, now called the Łojasiewicz–Simon gradient inequality. This book presents a unified method to show asymptotic convergence of solutions to a stationary solution for abstract parabolic evolution equations of the gradient form by utilizing this Łojasiewicz–Simon gradient inequality. In order to apply the abstract results to a wider class of concrete nonlinear parabolic equations, the usual Łojasiewicz–Simon inequality is extended, which is published here for the first time. In the second version, these abstract results are applied to reaction–diffusion equations with discontinuous coefficients, reaction–diffusion systems, and epitaxial growth equations. The results are also applied to the famous chemotaxis model, i.e., the Keller–Segel equations even for higher-dimensional ones.
Download or read book Analytic Semigroups and Optimal Regularity in Parabolic Problems written by Alessandra Lunardi and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book shows how the abstract methods of analytic semigroups and evolution equations in Banach spaces can be fruitfully applied to the study of parabolic problems. Particular attention is paid to optimal regularity results in linear equations. Furthermore, these results are used to study several other problems, especially fully nonlinear ones. Owing to the new unified approach chosen, known theorems are presented from a novel perspective and new results are derived. The book is self-contained. It is addressed to PhD students and researchers interested in abstract evolution equations and in parabolic partial differential equations and systems. It gives a comprehensive overview on the present state of the art in the field, teaching at the same time how to exploit its basic techniques. - - - This very interesting book provides a systematic treatment of the basic theory of analytic semigroups and abstract parabolic equations in general Banach spaces, and how this theory may be used in the study of parabolic partial differential equations; it takes into account the developments of the theory during the last fifteen years. (...) For instance, optimal regularity results are a typical feature of abstract parabolic equations; they are comprehensively studied in this book, and yield new and old regularity results for parabolic partial differential equations and systems. (Mathematical Reviews) Motivated by applications to fully nonlinear problems the approach is focused on classical solutions with continuous or Hölder continuous derivatives. (Zentralblatt MATH)
Download or read book Control Theory for Partial Differential Equations Volume 1 Abstract Parabolic Systems written by Irena Lasiecka and published by Cambridge University Press. This book was released on 2000-02-13 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in 2000, this is the first volume of a comprehensive two-volume treatment of quadratic optimal control theory for partial differential equations over a finite or infinite time horizon, and related differential (integral) and algebraic Riccati equations. Both continuous theory and numerical approximation theory are included. The authors use an abstract space, operator theoretic approach, which is based on semigroups methods, and which is unifying across a few basic classes of evolution. The various abstract frameworks are motivated by, and ultimately directed to, partial differential equations with boundary/point control. Volume 1 includes the abstract parabolic theory for the finite and infinite cases and corresponding PDE illustrations as well as various abstract hyperbolic settings in the finite case. It presents numerous fascinating results. These volumes will appeal to graduate students and researchers in pure and applied mathematics and theoretical engineering with an interest in optimal control problems.
Download or read book Evolution Equations and Their Applications in Physical and Life Sciences written by G Lumer and published by CRC Press. This book was released on 2000-11-08 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a collection of lectures on linear partial differntial equations and semigroups, nonlinear equations, stochastic evolutionary processes, and evolution problems from physics, engineering and mathematical biology. The contributions come from the 6th International Conference on Evolution Equations and Their Applications in Physical and Life Sciences, held in Bad Herrenalb, Germany.
Download or read book Abstract Parabolic Evolution Equations and ojasiewicz Simon Inequality II written by Atsushi Yagi and published by Springer Nature. This book was released on 2021-08-12 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second volume continues the study on asymptotic convergence of global solutions of parabolic equations to stationary solutions by utilizing the theory of abstract parabolic evolution equations and the Łojasiewicz–Simon gradient inequality. In the first volume of the same title, after setting the abstract frameworks of arguments, a general convergence theorem was proved under the four structural assumptions of critical condition, Lyapunov function, angle condition, and gradient inequality. In this volume, with those abstract results reviewed briefly, their applications to concrete parabolic equations are described. Chapter 3 presents a discussion of semilinear parabolic equations of second order in general n-dimensional spaces, and Chapter 4 is devoted to treating epitaxial growth equations of fourth order, which incorporate general roughening functions. In Chapter 5 consideration is given to the Keller–Segel equations in one-, two-, and three-dimensional spaces. Some of these results had already been obtained and published by the author in collaboration with his colleagues. However, by means of the abstract theory described in the first volume, those results can be extended much more. Readers of this monograph should have a standard-level knowledge of functional analysis and of function spaces. Familiarity with functional analytic methods for partial differential equations is also assumed.
Download or read book Linear and Quasilinear Parabolic Problems written by Herbert Amann and published by Birkhäuser. This book was released on 2012-12-06 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this treatise we present the semigroup approach to quasilinear evolution equa of parabolic type that has been developed over the last ten years, approxi tions mately. It emphasizes the dynamic viewpoint and is sufficiently general and flexible to encompass a great variety of concrete systems of partial differential equations occurring in science, some of those being of rather 'nonstandard' type. In partic ular, to date it is the only general method that applies to noncoercive systems. Although we are interested in nonlinear problems, our method is based on the theory of linear holomorphic semigroups. This distinguishes it from the theory of nonlinear contraction semigroups whose basis is a nonlinear version of the Hille Yosida theorem: the Crandall-Liggett theorem. The latter theory is well-known and well-documented in the literature. Even though it is a powerful technique having found many applications, it is limited in its scope by the fact that, in concrete applications, it is closely tied to the maximum principle. Thus the theory of nonlinear contraction semigroups does not apply to systems, in general, since they do not allow for a maximum principle. For these reasons we do not include that theory.
Download or read book Evolution Equations written by Gisele Ruiz Goldstein and published by CRC Press. This book was released on 2003-06-24 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Celebrating the work of renowned mathematician Jerome A. Goldstein, this reference compiles original research on the theory and application of evolution equations to stochastics, physics, engineering, biology, and finance. The text explores a wide range of topics in linear and nonlinear semigroup theory, operator theory, functional analysis, and linear and nonlinear partial differential equations, and studies the latest theoretical developments and uses of evolution equations in a variety of disciplines. Providing nearly 500 references, the book contains discussions by renowned mathematicians such as H. Brezis, G. Da Prato, N.E. Gretskij, I. Lasiecka, Peter Lax, M. M. Rao, and R. Triggiani.
Download or read book Evolution Equations Semigroups and Functional Analysis written by Alfredo Lorenzi and published by Birkhäuser. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brunello Terreni (1953-2000) was a researcher and teacher with vision and dedication. The present volume is dedicated to the memory of Brunello Terreni. His mathematical interests are reflected in 20 expository articles written by distinguished mathematicians. The unifying theme of the articles is "evolution equations and functional analysis", which is presented in various and diverse forms: parabolic equations, semigroups, stochastic evolution, optimal control, existence, uniqueness and regularity of solutions, inverse problems as well as applications. Contributors: P. Acquistapace, V. Barbu, A. Briani, L. Boccardo, P. Colli Franzone, G. Da Prato, D. Donatelli, A. Favini, M. Fuhrmann, M. Grasselli, R. Illner, H. Koch, R. Labbas, H. Lange, I. Lasiecka, A. Lorenzi, A. Lunardi, P. Marcati, R. Nagel, G. Nickel, V. Pata, M. M. Porzio, B. Ruf, G. Savaré, R. Schnaubelt, E. Sinestrari, H. Tanabe, H. Teismann, E. Terraneo, R. Triggiani, A. Yagi.
Download or read book Critical Parabolic Type Problems written by Tomasz W. Dłotko and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-05-05 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book covers the theory of semilinear equations with sectorial operator going back to the studies of Yosida, Henry, and Pazy, which are deeply extended nowadays. The treatment emphasizes existence-uniqueness theory as a topic of functional analysis and examines abstract evolutionary equations, with applications to the Navier-Stokes system, the quasi-geostrophic equation, and fractional reaction-diffusion equations.
Download or read book Abstract Volterra Integro Differential Equations written by Marko Kostic and published by CRC Press. This book was released on 2015-05-06 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of linear Volterra integro-differential equations has been developing rapidly in the last three decades. This book provides an easy to read concise introduction to the theory of ill-posed abstract Volterra integro-differential equations. A major part of the research is devoted to the study of various types of abstract (multi-term) fracti
Download or read book Infinite Dimensional And Finite Dimensional Stochastic Equations And Applications In Physics written by Wilfried Grecksch and published by World Scientific. This book was released on 2020-04-22 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains survey articles on various aspects of stochastic partial differential equations (SPDEs) and their applications in stochastic control theory and in physics.The topics presented in this volume are:This book is intended not only for graduate students in mathematics or physics, but also for mathematicians, mathematical physicists, theoretical physicists, and science researchers interested in the physical applications of the theory of stochastic processes.
Download or read book Nonlinear Partial Differential Equations with Applications written by Tomás Roubicek and published by Springer Science & Business Media. This book was released on 2006-01-17 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book primarily concerns quasilinear and semilinear elliptic and parabolic partial differential equations, inequalities, and systems. The exposition quickly leads general theory to analysis of concrete equations, which have specific applications in such areas as electrically (semi-) conductive media, modeling of biological systems, and mechanical engineering. Methods of Galerkin or of Rothe are exposed in a large generality.
Download or read book Evolution Equations and Approximations written by Kazufumi Ito and published by World Scientific. This book was released on 2002 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Ito (North Carolina State U.) and Kappel (U. of Graz, Austria) offer a unified presentation of the general approach for well-posedness results using abstract evolution equations, drawing from and modifying the work of K. and Y. Kobayashi and S. Oharu. They also explore abstract approximation results for evolution equations. Their work is not a textbook, but they explain how instructors can use various sections, or combinations of them, as a foundation for a range of courses. Annotation copyrighted by Book News, Inc., Portland, OR