EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Abstract Lie Algebras

    Book Details:
  • Author : David J. Winter
  • Publisher : Courier Corporation
  • Release : 2008-01-01
  • ISBN : 048646282X
  • Pages : 162 pages

Download or read book Abstract Lie Algebras written by David J. Winter and published by Courier Corporation. This book was released on 2008-01-01 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solid but concise, this account emphasizes Lie algebra's simplicity of theory, offering new approaches to major theorems and extensive treatment of Cartan and related Lie subalgebras over arbitrary fields. 1972 edition.

Book Introduction to Lie Algebras and Representation Theory

Download or read book Introduction to Lie Algebras and Representation Theory written by J.E. Humphreys and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce the reader to the theory of semisimple Lie algebras over an algebraically closed field of characteristic 0, with emphasis on representations. A good knowledge of linear algebra (including eigenvalues, bilinear forms, euclidean spaces, and tensor products of vector spaces) is presupposed, as well as some acquaintance with the methods of abstract algebra. The first four chapters might well be read by a bright undergraduate; however, the remaining three chapters are admittedly a little more demanding. Besides being useful in many parts of mathematics and physics, the theory of semisimple Lie algebras is inherently attractive, combining as it does a certain amount of depth and a satisfying degree of completeness in its basic results. Since Jacobson's book appeared a decade ago, improvements have been made even in the classical parts of the theory. I have tried to incor porate some of them here and to provide easier access to the subject for non-specialists. For the specialist, the following features should be noted: (I) The Jordan-Chevalley decomposition of linear transformations is emphasized, with "toral" subalgebras replacing the more traditional Cartan subalgebras in the semisimple case. (2) The conjugacy theorem for Cartan subalgebras is proved (following D. J. Winter and G. D. Mostow) by elementary Lie algebra methods, avoiding the use of algebraic geometry.

Book Naive Lie Theory

    Book Details:
  • Author : John Stillwell
  • Publisher : Springer Science & Business Media
  • Release : 2008-12-15
  • ISBN : 038778215X
  • Pages : 230 pages

Download or read book Naive Lie Theory written by John Stillwell and published by Springer Science & Business Media. This book was released on 2008-12-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

Book Lie Groups  Lie Algebras  and Representations

Download or read book Lie Groups Lie Algebras and Representations written by Brian Hall and published by Springer. This book was released on 2015-05-11 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook treats Lie groups, Lie algebras and their representations in an elementary but fully rigorous fashion requiring minimal prerequisites. In particular, the theory of matrix Lie groups and their Lie algebras is developed using only linear algebra, and more motivation and intuition for proofs is provided than in most classic texts on the subject. In addition to its accessible treatment of the basic theory of Lie groups and Lie algebras, the book is also noteworthy for including: a treatment of the Baker–Campbell–Hausdorff formula and its use in place of the Frobenius theorem to establish deeper results about the relationship between Lie groups and Lie algebras motivation for the machinery of roots, weights and the Weyl group via a concrete and detailed exposition of the representation theory of sl(3;C) an unconventional definition of semisimplicity that allows for a rapid development of the structure theory of semisimple Lie algebras a self-contained construction of the representations of compact groups, independent of Lie-algebraic arguments The second edition of Lie Groups, Lie Algebras, and Representations contains many substantial improvements and additions, among them: an entirely new part devoted to the structure and representation theory of compact Lie groups; a complete derivation of the main properties of root systems; the construction of finite-dimensional representations of semisimple Lie algebras has been elaborated; a treatment of universal enveloping algebras, including a proof of the Poincaré–Birkhoff–Witt theorem and the existence of Verma modules; complete proofs of the Weyl character formula, the Weyl dimension formula and the Kostant multiplicity formula. Review of the first edition: This is an excellent book. It deserves to, and undoubtedly will, become the standard text for early graduate courses in Lie group theory ... an important addition to the textbook literature ... it is highly recommended. — The Mathematical Gazette

Book Lie Algebras

    Book Details:
  • Author : Nathan Jacobson
  • Publisher : Courier Corporation
  • Release : 2013-09-16
  • ISBN : 0486136795
  • Pages : 348 pages

Download or read book Lie Algebras written by Nathan Jacobson and published by Courier Corporation. This book was released on 2013-09-16 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVDefinitive treatment of important subject in modern mathematics. Covers split semi-simple Lie algebras, universal enveloping algebras, classification of irreducible modules, automorphisms, simple Lie algebras over an arbitrary field, etc. Index. /div

Book Semi Simple Lie Algebras and Their Representations

Download or read book Semi Simple Lie Algebras and Their Representations written by Robert N. Cahn and published by Courier Corporation. This book was released on 2014-06-10 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed to acquaint students of particle physiME already familiar with SU(2) and SU(3) with techniques applicable to all simple Lie algebras, this text is especially suited to the study of grand unification theories. Author Robert N. Cahn, who is affiliated with the Lawrence Berkeley National Laboratory in Berkeley, California, has provided a new preface for this edition. Subjects include the killing form, the structure of simple Lie algebras and their representations, simple roots and the Cartan matrix, the classical Lie algebras, and the exceptional Lie algebras. Additional topiME include Casimir operators and Freudenthal's formula, the Weyl group, Weyl's dimension formula, reducing product representations, subalgebras, and branching rules. 1984 edition.

Book Lie Groups  Lie Algebras  and Representations

Download or read book Lie Groups Lie Algebras and Representations written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2003-08-07 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to Lie groups, Lie algebras, and repre sentation theory, aimed at graduate students in mathematics and physics. Although there are already several excellent books that cover many of the same topics, this book has two distinctive features that I hope will make it a useful addition to the literature. First, it treats Lie groups (not just Lie alge bras) in a way that minimizes the amount of manifold theory needed. Thus, I neither assume a prior course on differentiable manifolds nor provide a con densed such course in the beginning chapters. Second, this book provides a gentle introduction to the machinery of semi simple groups and Lie algebras by treating the representation theory of SU(2) and SU(3) in detail before going to the general case. This allows the reader to see roots, weights, and the Weyl group "in action" in simple cases before confronting the general theory. The standard books on Lie theory begin immediately with the general case: a smooth manifold that is also a group. The Lie algebra is then defined as the space of left-invariant vector fields and the exponential mapping is defined in terms of the flow along such vector fields. This approach is undoubtedly the right one in the long run, but it is rather abstract for a reader encountering such things for the first time.

Book An Introduction to Lie Groups and Lie Algebras

Download or read book An Introduction to Lie Groups and Lie Algebras written by Alexander A. Kirillov and published by Cambridge University Press. This book was released on 2008-07-31 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.

Book Introduction to Lie Algebras

Download or read book Introduction to Lie Algebras written by K. Erdmann and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie groups and Lie algebras have become essential to many parts of mathematics and theoretical physics, with Lie algebras a central object of interest in their own right. This book provides an elementary introduction to Lie algebras based on a lecture course given to fourth-year undergraduates. The only prerequisite is some linear algebra and an appendix summarizes the main facts that are needed. The treatment is kept as simple as possible with no attempt at full generality. Numerous worked examples and exercises are provided to test understanding, along with more demanding problems, several of which have solutions. Introduction to Lie Algebras covers the core material required for almost all other work in Lie theory and provides a self-study guide suitable for undergraduate students in their final year and graduate students and researchers in mathematics and theoretical physics.

Book Lie Groups and Algebras with Applications to Physics  Geometry  and Mechanics

Download or read book Lie Groups and Algebras with Applications to Physics Geometry and Mechanics written by D.H. Sattinger and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended as an introductory text on the subject of Lie groups and algebras and their role in various fields of mathematics and physics. It is written by and for researchers who are primarily analysts or physicists, not algebraists or geometers. Not that we have eschewed the algebraic and geo metric developments. But we wanted to present them in a concrete way and to show how the subject interacted with physics, geometry, and mechanics. These interactions are, of course, manifold; we have discussed many of them here-in particular, Riemannian geometry, elementary particle physics, sym metries of differential equations, completely integrable Hamiltonian systems, and spontaneous symmetry breaking. Much ofthe material we have treated is standard and widely available; but we have tried to steer a course between the descriptive approach such as found in Gilmore and Wybourne, and the abstract mathematical approach of Helgason or Jacobson. Gilmore and Wybourne address themselves to the physics community whereas Helgason and Jacobson address themselves to the mathematical community. This book is an attempt to synthesize the two points of view and address both audiences simultaneously. We wanted to present the subject in a way which is at once intuitive, geometric, applications oriented, mathematically rigorous, and accessible to students and researchers without an extensive background in physics, algebra, or geometry.

Book A Course in Group Theory

Download or read book A Course in Group Theory written by J. F. Humphreys and published by Oxford University Press, USA. This book was released on 1996 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each chapter ends with a summary of the material covered and notes on the history and development of group theory.

Book Lie Algebras In Particle Physics

Download or read book Lie Algebras In Particle Physics written by Howard Georgi and published by CRC Press. This book was released on 2018-05-04 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author convinces that Sir Arthur Stanley Eddington had things a little bit wrong, as least as far as physics is concerned. He explores the theory of groups and Lie algebras and their representations to use group representations as labor-saving tools.

Book Lie Algebras and Applications

Download or read book Lie Algebras and Applications written by Francesco Iachello and published by Springer. This book was released on 2007-02-22 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, designed for advanced graduate students and post-graduate researchers, introduces Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. The book contains many examples that help to elucidate the abstract algebraic definitions. It provides a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators and the dimensions of the representations of all classical Lie algebras.

Book Lie Groups  Lie Algebras  and Some of Their Applications

Download or read book Lie Groups Lie Algebras and Some of Their Applications written by Robert Gilmore and published by Courier Corporation. This book was released on 2012-05-23 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.

Book Introduction to Finite and Infinite Dimensional Lie  Super algebras

Download or read book Introduction to Finite and Infinite Dimensional Lie Super algebras written by Neelacanta Sthanumoorthy and published by Academic Press. This book was released on 2016-04-26 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. Introduction to Finite and Infinite Dimensional Lie Algebras and Superalgebras introduces the theory of Lie superalgebras, their algebras, and their representations. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semi-simple Lie algebras. While discussing all classes of finite and infinite dimensional Lie algebras and Lie superalgebras in terms of their different classes of root systems, the book focuses on Kac-Moody algebras. With numerous exercises and worked examples, it is ideal for graduate courses on Lie groups and Lie algebras. - Discusses the fundamental structure and all root relationships of Lie algebras and Lie superalgebras and their finite and infinite dimensional representation theory - Closely describes BKM Lie superalgebras, their different classes of imaginary root systems, their complete classifications, root-supermultiplicities, and related combinatorial identities - Includes numerous tables of the properties of individual Lie algebras and Lie superalgebras - Focuses on Kac-Moody algebras

Book Lie Algebras and Algebraic Groups

Download or read book Lie Algebras and Algebraic Groups written by Patrice Tauvel and published by Springer Science & Business Media. This book was released on 2005-08-08 with total page 650 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.

Book Lie Theory

    Book Details:
  • Author : Jean-Philippe Anker
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 0817681922
  • Pages : 341 pages

Download or read book Lie Theory written by Jean-Philippe Anker and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: * First of three independent, self-contained volumes under the general title, "Lie Theory," featuring original results and survey work from renowned mathematicians. * Contains J. C. Jantzen's "Nilpotent Orbits in Representation Theory," and K.-H. Neeb's "Infinite Dimensional Groups and their Representations." * Comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. * Should benefit graduate students and researchers in mathematics and mathematical physics.