EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Error Inequalities in Polynomial Interpolation and Their Applications

Download or read book Error Inequalities in Polynomial Interpolation and Their Applications written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, which presents the cumulation of the authors' research in the field, deals with Lidstone, Hermite, Abel--Gontscharoff, Birkhoff, piecewise Hermite and Lidstone, spline and Lidstone--spline interpolating problems. Explicit representations of the interpolating polynomials and associated error functions are given, as well as explicit error inequalities in various norms. Numerical illustrations are provided of the importance and sharpness of the various results obtained. Also demonstrated are the significance of these results in the theory of ordinary differential equations such as maximum principles, boundary value problems, oscillation theory, disconjugacy and disfocality. For mathematicians, numerical analysts, computer scientists and engineers.

Book Difference Equations and Inequalities

Download or read book Difference Equations and Inequalities written by Ravi P. Agarwal and published by CRC Press. This book was released on 2000-01-27 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and

Book Boundary Value Problems for Functional Differential Equations

Download or read book Boundary Value Problems for Functional Differential Equations written by Johnny Henderson and published by World Scientific. This book was released on 1995 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional differential equations have received attention since the 1920's. Within that development, boundary value problems have played a prominent role in both the theory and applications dating back to the 1960's. This book attempts to present some of the more recent developments from a cross-section of views on boundary value problems for functional differential equations.Contributions represent not only a flavor of classical results involving, for example, linear methods and oscillation-nonoscillation techiques, but also modern nonlinear methods for problems involving stability and control as well as cone theoretic, degree theoretic, and topological transversality strategies. A balance with applications is provided through a number of papers dealing with a pendulum with dry friction, heat conduction in a thin stretched resistance wire, problems involving singularities, impulsive systems, traveling waves, climate modeling, and economic control.With the importance of boundary value problems for functional differential equations in applications, it is not surprising that as new applications arise, modifications are required for even the definitions of the basic equations. This is the case for some of the papers contributed by the Perm seminar participants. Also, some contributions are devoted to delay Fredholm integral equations, while a few papers deal with what might be termed as boundary value problems for delay-difference equations.

Book General Inequalities 6

    Book Details:
  • Author : Wolfgang Walter
  • Publisher : Birkhäuser
  • Release : 2013-11-11
  • ISBN : 3034875657
  • Pages : 507 pages

Download or read book General Inequalities 6 written by Wolfgang Walter and published by Birkhäuser. This book was released on 2013-11-11 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sixthInternational Conference on General Inequalities was held from Dec. 9 to Dec. 15, 1990, at the Mathematisches Forschungsinstitut Oberwolfach (Black Fa rest, Germany). The organizing committee was composed of W.N. Everitt (Birm ingham), L. Losonczi (Debrecen) and W. Walter (Karlsruhe). Dr. A. Kovacec ( Coimbra) served cheerfully and efficiently as secretary of the meeting. The con ference was attended by 44 participants from 20 countries. Yet again the importance of inequalities in both pure and applied mathematics was made evident from the wide range of interests of the individual participants, and from the wealth of new results announced. New inequalities were presented in the usual spread of the subject areas now expected for these meetings: Classical and functional analysis, existence and boundary value problems for both ordinary and partial differential equations, with special contributions to computer science, quantum holography and error analysis. More strongly than ever, the role played by modern electronic computers was made clear in testing out and prohing into the validity and structure of certain inequalities. Here the computer acts not only for numerical calculations of great complexity, but also in symbolic manipulation of complex finite structures. Prob lems in inequalities which even a few years ago were intractable, now fall to solution or receive direct and positive guidance as a result of computer applications. The interface between finite and infinite structures in mathematics and the versatility of modern computers is weil developed in the subject of general inequalities.

Book General Inequalities

Download or read book General Inequalities written by and published by . This book was released on 1990 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Publications and Theses

Download or read book Publications and Theses written by National University of Singapore and published by . This book was released on 1991 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamic Equations on Time Scales

Download or read book Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: On becoming familiar with difference equations and their close re lation to differential equations, I was in hopes that the theory of difference equations could be brought completely abreast with that for ordinary differential equations. [HUGH L. TURRITTIN, My Mathematical Expectations, Springer Lecture Notes 312 (page 10), 1973] A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both. [E. T. BELL, Men of Mathematics, Simon and Schuster, New York (page 13/14), 1937] The theory of time scales, which has recently received a lot of attention, was introduced by Stefan Hilger in his PhD thesis [159] in 1988 (supervised by Bernd Aulbach) in order to unify continuous and discrete analysis. This book is an intro duction to the study of dynamic equations on time scales. Many results concerning differential equations carryover quite easily to corresponding results for difference equations, while other results seem to be completely different in nature from their continuous counterparts. The study of dynamic equations on time scales reveals such discrepancies, and helps avoid proving results twice, once for differential equa tions and once for difference equations. The general idea is to prove a result for a dynamic equation where the domain of the unknown function is a so-called time scale, which is an arbitrary nonempty closed subset of the reals.

Book Convex Functions  Partial Orderings  and Statistical Applications

Download or read book Convex Functions Partial Orderings and Statistical Applications written by Josip E. Peajcariaac and published by Academic Press. This book was released on 1992-06-03 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research-level book presents up-to-date information concerning recent developments in convex functions and partial orderings and some applications in mathematics, statistics, and reliability theory. The book will serve researchers in mathematical and statistical theory and theoretical and applied reliabilists. Presents classical and newly published results on convex functions and related inequalities Explains partial ordering based on arrangement and their applications in mathematics, probability, statsitics, and reliability Demonstrates the connection of partial ordering with other well-known orderings such as majorization and Schur functions Will generate further research and applications

Book Interpolation and Approximation

Download or read book Interpolation and Approximation written by Philip J. Davis and published by Courier Corporation. This book was released on 1975-01-01 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intermediate-level survey covers remainder theory, convergence theorems, and uniform and best approximation. Other topics include least square approximation, Hilbert space, orthogonal polynomials, theory of closure and completeness, and more. 1963 edition.

Book Dynamic Systems on Measure Chains

Download or read book Dynamic Systems on Measure Chains written by V. Lakshmikantham and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: From a modelling point of view, it is more realistic to model a phenomenon by a dynamic system which incorporates both continuous and discrete times, namely, time as an arbitrary closed set of reals called time-scale or measure chain. It is therefore natural to ask whether it is possible to provide a framework which permits us to handle both dynamic systems simultaneously so that one can get some insight and a better understanding of the subtle differences of these two different systems. The answer is affirmative, and recently developed theory of dynamic systems on time scales offers the desired unified approach. In this monograph, we present the current state of development of the theory of dynamic systems on time scales from a qualitative point of view. It consists of four chapters. Chapter one develops systematically the necessary calculus of functions on time scales. In chapter two, we introduce dynamic systems on time scales and prove the basic properties of solutions of such dynamic systems. The theory of Lyapunov stability is discussed in chapter three in an appropriate setup. Chapter four is devoted to describing several different areas of investigations of dynamic systems on time scales which will provide an exciting prospect and impetus for further advances in this important area which is very new. Some important features of the monograph are as follows: It is the first book that is dedicated to a systematic development of the theory of dynamic systems on time scales which is of recent origin. It demonstrates the interplay of the two different theories, namely, the theory of continuous and discrete dynamic systems, when imbedded in one unified framework. It provides an impetus to investigate in the setup of time scales other important problems which might offer a better understanding of the intricacies of a unified study.£/LIST£ Audience: The readership of this book consists of applied mathematicians, engineering scientists, research workers in dynamic systems, chaotic theory and neural nets.

Book Advances in Dynamic Equations on Time Scales

Download or read book Advances in Dynamic Equations on Time Scales written by Martin Bohner and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent introductory material on the calculus of time scales and dynamic equations.; Numerous examples and exercises illustrate the diverse application of dynamic equations on time scales.; Unified and systematic exposition of the topics allows good transitions from chapter to chapter.; Contributors include Anderson, M. Bohner, Davis, Dosly, Eloe, Erbe, Guseinov, Henderson, Hilger, Hilscher, Kaymakcalan, Lakshmikantham, Mathsen, and A. Peterson, founders and leaders of this field of study.; Useful as a comprehensive resource of time scales and dynamic equations for pure and applied mathematicians.; Comprehensive bibliography and index complete this text.

Book Classical and New Inequalities in Analysis

Download or read book Classical and New Inequalities in Analysis written by Dragoslav S. Mitrinovic and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a comprehensive compendium of classical and new inequalities as well as some recent extensions to well-known ones. Variations of inequalities ascribed to Abel, Jensen, Cauchy, Chebyshev, Hölder, Minkowski, Stefferson, Gram, Fejér, Jackson, Hardy, Littlewood, Po'lya, Schwarz, Hadamard and a host of others can be found in this volume. The more than 1200 cited references include many from the last ten years which appear in a book for the first time. The 30 chapters are all devoted to inequalities associated with a given classical inequality, or give methods for the derivation of new inequalities. Anyone interested in equalities, from student to professional, will find their favorite inequality and much more.

Book Advanced Topics in Difference Equations

Download or read book Advanced Topics in Difference Equations written by R.P. Agarwal and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: . The theory of difference equations, the methods used in their solutions and their wide applications have advanced beyond their adolescent stage to occupy a central position in Applicable Analysis. In fact, in the last five years, the proliferation of the subject is witnessed by hundreds of research articles and several monographs, two International Conferences and numerous Special Sessions, and a new Journal as well as several special issues of existing journals, all devoted to the theme of Difference Equations. Now even those experts who believe in the universality of differential equations are discovering the sometimes striking divergence between the continuous and the discrete. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. In 1992, the first author published a monograph on the subject entitled Difference Equations and Inequalities. This book was an in-depth survey of the field up to the year of publication. Since then, the subject has grown to such an extent that it is now quite impossible for a similar survey, even to cover just the results obtained in the last four years, to be written. In the present monograph, we have collected some of the results which we have obtained in the last few years, as well as some yet unpublished ones.

Book Inequalities Involving Functions and Their Integrals and Derivatives

Download or read book Inequalities Involving Functions and Their Integrals and Derivatives written by Dragoslav S. Mitrinovic and published by Springer Science & Business Media. This book was released on 1991-07-31 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive, up-to-date survey of inequalities that involve a relationship between a function and its derivatives or integrals. The book is divided into 18 chapters, some of which are devoted to specific inequalities such as those of Kolmogorov-Landau, Wirtinger, Hardy, Carlson, Hilbert, Caplygin, Lyapunov, Gronwell and others. Over 800 references to the literature are cited; proofs are given when these provide insight into the general methods involved; and applications, especially to the theory of differential equations, are mentioned when appropriate. This volume will interest all those whose work involves differential and integral equations. It can also be recommended as a supplementary text.

Book Fixed Point Theory and Applications

Download or read book Fixed Point Theory and Applications written by Ravi P. Agarwal and published by Cambridge University Press. This book was released on 2001-03-22 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a clear exposition of the flourishing field of fixed point theory. Starting from the basics of Banach's contraction theorem, most of the main results and techniques are developed: fixed point results are established for several classes of maps and the three main approaches to establishing continuation principles are presented. The theory is applied to many areas of interest in analysis. Topological considerations play a crucial role, including a final chapter on the relationship with degree theory. Researchers and graduate students in applicable analysis will find this to be a useful survey of the fundamental principles of the subject. The very extensive bibliography and close to 100 exercises mean that it can be used both as a text and as a comprehensive reference work, currently the only one of its type.

Book Dynamic Inequalities On Time Scales

Download or read book Dynamic Inequalities On Time Scales written by Ravi Agarwal and published by Springer. This book was released on 2014-10-30 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a monograph devoted to recent research and results on dynamic inequalities on time scales. The study of dynamic inequalities on time scales has been covered extensively in the literature in recent years and has now become a major sub-field in pure and applied mathematics. In particular, this book will cover recent results on integral inequalities, including Young's inequality, Jensen's inequality, Holder's inequality, Minkowski's inequality, Steffensen's inequality, Hermite-Hadamard inequality and Čebyšv's inequality. Opial type inequalities on time scales and their extensions with weighted functions, Lyapunov type inequalities, Halanay type inequalities for dynamic equations on time scales, and Wirtinger type inequalities on time scales and their extensions will also be discussed here in detail.